Advertisement

Closed Rotation Sequences

  • 261 Accesses

  • 3 Citations

Abstract

A finite sequence of rotations is closed if a sequential application of all the rotations from the sequence results in no net orientation change. A complete characterization of closed rotation sequences involving a given set of rotation axes is presented, and the set of such sequences is shown to be a smooth manifold under a nondegeneracy condition on the rotation axes. The characterization is used to derive several examples of closed rotation sequences, some of which are then shown to specialize to classical examples of such sequences provided by the Rodrigues–Hamilton theorem and the Donkin’s theorem. Discrete versions of the Goodman–Robinson and Ishlinskii theorems are also derived and illustrated using the so-called Codman’s paradox.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    Both the coplanarity conditions imply that the angles between \((i-2)\)th and \((i-1)\)th faces of \(\fancyscript{M}_\mathrm{P}\) is the same as that between the corresponding faces of \(\fancyscript{F}_\mathrm{P}\). In other words, while the cones \(\fancyscript{M}\) and \(\fancyscript{F}\) have the same corresponding sides, the polar cones have the same corresponding angles.

References

  1. 1.

    Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Addison-Wesley, Reading, MA (1978)

  2. 2.

    Beatty, M.F.: Kinematics of finite, rigid-body displacements. Am. J. Phys. 34, 949–954 (1966)

  3. 3.

    Brummelen, G.V.: Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry. Princeton University Press, Princeton (2013)

  4. 4.

    Casey, J.: A Treatise on Spherical Trigonometry. Hodges, Figgis and Co., Dublin (1889)

  5. 5.

    Codman, E.A.: The Shoulder: Rupture of the Supraspinatus Tendon and Other Lesions in or About the Subacromial Bursa, 2nd edn. T. Todd Co., Boston (1934)

  6. 6.

    Conway, J.H., Smith, D.A.: On Quaternions and Octonions: Their Geometry, Arithmetic and Symmetry. A. K. Peters, Natick, MA (2003)

  7. 7.

    Coxeter, H.S.M.: Non-Euclidean Geometry. The University of Toronto Press, Toronto (1957)

  8. 8.

    Crasta, N.: Observability of nonlinear input-affine systems with application to attitude dynamics. Ph.D. thesis, Indian Institute of Technology Bombay, Mumbai, India (2009)

  9. 9.

    Donkin, W.F.: On the geometrical laws of the motion of a rigid system about a fixed point. Philos. Mag. (3rd Series) 36(245), 427–433 (1850)

  10. 10.

    Donkin, W.F.: On the geometrical theory of rotation. Philos. Mag. (4th Series) 1(III), 187–192 (1851)

  11. 11.

    Doughty Jr, S.P., Infante, E.F.: Matrix proof of the theorem of Rodrigues and Hamilton. Am. J. Phys. 32(9), 712–713 (1964)

  12. 12.

    Goldstein, H., Poole Jr, C.P., Safko, J.L.: Classical Mechanics, 3rd edn. Pearson Education, Inc., Upper Saddle River (2002)

  13. 13.

    Goodman, L.E., Robinson, R.E.: Effect of finite rotations on gyroscopic sensing devices. J. Appl. Mech. 28, 210–213 (1958)

  14. 14.

    Hamilton, W.R.: On quaternions. Proc. R. Ir. Acad. 3, 1–16 (1847)

  15. 15.

    Hamilton, W.R.: Lectures on Quaternions. Hodges and Smith, Dublin (1853)

  16. 16.

    Ishlinskii, A.Y.: Mechanics of Gyroscopic Systems. Israel Program for Scientific Translations, Jerusalem (1965)

  17. 17.

    Junkins, J.L., Shuster, M.D.: The geometry of the Euler angles. J. Astronaut. Sci. 41(4), 531–543 (1993)

  18. 18.

    Kapovich, M., Millson, J.J.: On the moduli space of a spherical polygonal linkage. Can. Math. Bull. 42(3), 307–320 (1999)

  19. 19.

    Kimov, D.M., Zhuravlev, V.P.: Group Theoretic Methods in Mechanics and Applied Mathematics. Taylor and Francis, London (2002)

  20. 20.

    Klein, F., Sommerfeld, A.: The Theory of the Top, vol. I. Introduction to the Kinematics and Kinetics of the Top (trans: Sandri, G., Nagem, R.J.). Birkhauser, Basel (2008)

  21. 21.

    Kuipers, J.B.: Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality. Princeton University Press, Princeton (2005)

  22. 22.

    Lamb, H.: The kinematics of the eye. Philos. Mag. (6th Series) 38(228), 685–697 (1919)

  23. 23.

    Lamb, H.: Higher Mechanics. Cambridge University Press, London (1920)

  24. 24.

    Levi, M.: Geometric phases in the motion of rigid bodies. Arch. Ration. Mech. Anal. 122, 213–229 (1993)

  25. 25.

    Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, vol. 17, 2nd edn. Springer, New York (1999)

  26. 26.

    Morawiec, A.: Orientations and Rotations: Computations in Crystallographic Textures. Springer-Verlag, Berlin (2004)

  27. 27.

    O’Reilly, O.M.: On the computation of relative rotations and geometric phases in the motions of rigid bodies. J. Appl. Mech. 64, 969–974 (1997)

  28. 28.

    Pearl, M.L., Sidles, J.A., Lippitt, S.B., Harryman, D.T., Matsen, F.A.: Codman’s paradox: sixty years later. J. Shoulder Elb. Surg. 1(4), 219–225 (1992)

  29. 29.

    Poinsot, L.: Outlines of a New Theory of Rotatory Motion (trans: Whitley, C.). R. Newby, Cambridge (1834)

  30. 30.

    Politti, J.C., Goroso, G., Valentinuzzi, M.E., Bravo, O.: Codman’s paradox of the arm rotations is not a paradox: mathematical validation. Med. Eng. Phys. 20, 257–260 (1998)

  31. 31.

    Room, T.G.: The composition of rotations in Euclidean three-space. Am. Math. Mon. 59(10), 688–692 (1952)

  32. 32.

    Routh, E.J.: The Elementary Part of a Treatise on the Dynamics of a System of Rigid Bodies. Macmillan and Company Limited, London (1897)

  33. 33.

    Sylvester, J.J.: On the rotation of a rigid body about a fixed point. Philos. Mag. (3rd Series) 37(252), 440–444 (1850)

  34. 34.

    Thomson, W., Tait, P.G.: Treatise on Natural Philosophy, Part I. University Press, Cambridge (1867)

  35. 35.

    Thurnauer, P.G.: Kinematics of finite, rigid-body displacements. Am. J. Phys. 35, 1145–1154 (1967)

  36. 36.

    Todhunter, I.: Spherical Trigonometry, 2nd edn. Macmillan and Co, London (1863)

  37. 37.

    Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 2nd edn. Cambridge University Press, London (1917)

  38. 38.

    Yeh, P., Gu, C.: Optics of Liquid Crystal Displays, 2nd edn. Wiley, Hoboken (2010)

  39. 39.

    Zhuravlev, V.F.: The solid angle theorem in rigid body dynamics. J. Appl. Math. Mech. 60(2), 319–322 (1996)

Download references

Acknowledgments

The second author is thankful to Professor Christoph Ament and Dr. Thomas Glotzbach, Technische Universität Ilmenau, for providing financial support through the project MORPH (EU FP7 under Grant agreement No. 288704).

Author information

Correspondence to Sanjay P. Bhat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 8322 KB)

Supplementary material 1 (mp4 8322 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhat, S.P., Crasta, N. Closed Rotation Sequences. Discrete Comput Geom 53, 366–396 (2015) doi:10.1007/s00454-014-9653-y

Download citation

Keywords

  • Rotation sequences
  • Spherical polygons
  • Rodrigues–Hamilton theorem
  • Donkin’s theorem
  • Goodman–Robinson theorem
  • Ishlinkskii’s theorem
  • Codman’s paradox

Mathematics Subject Classification

  • 51F25
  • 70B10