Advertisement

Discrete & Computational Geometry

, Volume 53, Issue 1, pp 1–15 | Cite as

A Combinatorial Tool for Computing the Effective Homotopy of Iterated Loop Spaces

  • Ana RomeroEmail author
  • Francis Sergeraert
Article

Abstract

This paper is devoted to the Cradle Theorem. It is a recursive description of a discrete vector field on the direct product of simplices \(\varDelta ^p \times \varDelta ^q\) endowed with the standard triangulation. The vector field provides an explicit deformation that is used to establish an algorithm for computing the Bousfield–Kan spectral sequence, more precisely to compute the homotopy groups \(\pi _n(\varOmega ^p G)\) for \(G\) a 1-reduced simplicial abelian group.

Keywords

Cradle Theorem Discrete vector fields  Effective homotopy 

Notes

Acknowledgments

The research was partially supported by Ministerio de Economía y Competitividad, Spain, project MTM2013-41775-P.

References

  1. 1.
    May, J.P.: Simplicial Objects in Algebraic Topology. Van Nostrand Mathematical Studies. University of Chicago Press, Chicago (1967)Google Scholar
  2. 2.
    Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory. Progress in Mathematics, vol. 174. Birkhäuser, Basel (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dousson, X., Rubio, J., Sergeraert, F., Siret, Y.: The Kenzo Program. Institut Fourier, Grenoble (1999). http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/. Accessed December 2014
  4. 4.
    Bousfield, A.K., Kan, D.M.: The homotopy spectral sequence of a space with coefficients in a ring. Topology 11, 79–106 (1972)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Real, P.: An algorithm computing homotopy groups. Math. Comput. Simul. 42, 461–465 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions and Localizations. Lecture Notes in Mathematics, vol. 304. Springer, Berlin (1972)CrossRefzbMATHGoogle Scholar
  7. 7.
    Romero, A., Sergeraert, F.: Effective homotopy of fibrations. Appl. Algebra Eng. Commun. Comput. 23, 85–100 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Romero, A., Sergeraert, F.: Programming before theorizing, a case study. In: International Symposium on Symbolic and Algebraic Computation, ISSAC 2012, pp. 289–296. ACM, New York (2012)Google Scholar
  10. 10.
    Romero, A., Sergeraert, F.: Discrete Vector Fields and fundamental Algebraic Topology (2010). Preprint arXiv:1005.5685v1
  11. 11.
    Rubio, J., Sergeraert, F.: Introduction to Combinatorial Homotopy Theory (2008). http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Trieste-Lecture-Notes.pdf
  12. 12.
    Romero, A., Sergeraert, F.: A combinatorial tool for computing the effective homotopy of iterated loop spaces, extended version (2014). Preprint http://www.unirioja.es/cu/anromero/actcehilsev.pdf. Accessed December 2014

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of La RiojaLogroñoSpain
  2. 2.Institut FourierGrenobleFrance

Personalised recommendations