Discrete & Computational Geometry

, Volume 52, Issue 3, pp 515–550 | Cite as

A Möbius-Invariant Power Diagram and Its Applications to Soap Bubbles and Planar Lombardi Drawing

Article

Abstract

We use three-dimensional hyperbolic geometry to define a form of power diagram for systems of circles in the plane that is invariant under Möbius transformations. By applying this construction to circle packings derived from the Koebe–Andreev–Thurston circle packing theorem, we show that every planar graph of maximum degree three has a planar Lombardi drawing (a drawing in which the edges are drawn as circular arcs, meeting at equal angles at each vertex). We use circle packing to construct planar Lombardi drawings of a special class of 4-regular planar graphs, the medial graphs of polyhedral graphs, and we show that not every 4-regular planar graph has a planar Lombardi drawing. We also use these power diagrams to characterize the graphs formed by two-dimensional soap bubble clusters (in equilibrium configurations) as being exactly the 3-regular bridgeless planar multigraphs, and we show that soap bubble clusters in stable equilibria must in addition be 3-connected.

Keywords

Graph drawing Lombardi drawing Soap bubbles Circle packing Power diagram Hyperbolic geometry 

References

  1. 1.
    Aaronson, S.: NP-complete problems and physical reality. SIGACT News 36(1), 30–52 (2005)CrossRefGoogle Scholar
  2. 2.
    Angelini, P., Eppstein, D., Frati, F., Kaufmann, M., Lazard, S., Mchedlidze, T., Teillaud, M., Wolff, A.: Universal point sets for planar graph drawings with circular arcs. In: Proceedings of the 25th Canadian Conference on Computational Geometry, pp. 117–122 (2013)Google Scholar
  3. 3.
    Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16(1), 78–96 (1987)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bern, M., Eppstein, D.: Optimal Möbius transformations for information visualization and meshing. In: 7th Workshop Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 2125, pp. 14–25. Springer, Beriln (2001).Google Scholar
  5. 5.
    Bern, M., Eppstein, D.: Möbius-invariant natural neighbor interpolation. In: Proceedings of 14th ACM-SIAM Symposium. Discrete Algorithms (SODA’03), pp. 128–129 (2003). http://portal.acm.org/citation.cfm?id=644130
  6. 6.
    Bern, M., Graham, R.: The shortest-network problem. Sci. Am. 260, 84–89 (1989)CrossRefGoogle Scholar
  7. 7.
    Brightwell, G.R., Scheinerman, E.R.: Representations of planar graphs. SIAM J. Discrete Math. 6(2), 214–229 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cannon, J.W., Floyd, W.J., Kenyon, R., Parry, W.R.: Hyperbolic geometry. In: Levy, S. (ed.) Flavors of Geometry, vol. 31, pp. 59–115. Cambridge University Press, MSRI, Cambridge (1997)Google Scholar
  9. 9.
    Chernobelskiy, R., Cunningham, K., Goodrich, M.T., Kobourov, S.G., Trott, L.: Force-directed Lombardi-style graph drawing. In: van Kreveld, M.J., Speckmann, B. (eds.) Proceedings of 19th International Symposium on Graph Drawing. Lecture Notes in Computer Science, vol. 7034, pp. 320–331. Springer, Berlin (2011).Google Scholar
  10. 10.
    Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two and three dimensions (preliminary version). In: Proceedings of 12th Symposium on Computational Geometry, pp. 319–328 (1996).Google Scholar
  11. 11.
    Collins, C.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. Theory Appl. 25(3), 233–256 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cox, S.J., Morgan, F., Graner, F.: Are large two-dimensional clusters of perimeter-minimizing bubbles of equal-area hexagonal or circular? (2012). PreprintGoogle Scholar
  13. 13.
    Di Battista, G., Tamassia, R.: Incremental planarity testing. In: 30th Symposium on Foundations of Computer Science, pp. 436–441. IEEE (1989).Google Scholar
  14. 14.
    Di Battista, G., Tamassia, R.: On-line graph algorithms with SPQR-trees. In: 17th International Colloquium Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 443, pp. 598–611. Springer, Berlin (1990).Google Scholar
  15. 15.
    Došlić, T.: On some structural properties of fullerene graphs. J. Math. Chem. 31(2), 187–195 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Löffler, M.: Planar and poly-arc Lombardi drawings. In: M.J. van Kreveld, B. Speckmann (eds.) Proceedings of 19th International Symposium on Graph Drawing. Lecture Notes in Computer Science, vol. 7034, pp. 308–319. Springer, Berlin (2011).Google Scholar
  17. 17.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing trees with perfect angular resolution and polynomial area. In: U. Brandes, S. Cornelsen (eds.) Proceedings of 18th International Symposium on Graph Drawing. Lecture Notes in Computer Science, vol. 6502, pp. 183–194. Springer, Berlin (2011).Google Scholar
  18. 18.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi drawings of graphs. J. Graph Algorithms Appl. 16(1), 85–108 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dutta, P., Khastgir, S.P., Roy, A.: Steiner trees and spanning trees in six-pin soap films. Am. J. Phys. 78(2), 215–221 (2010)CrossRefGoogle Scholar
  20. 20.
    Eppstein, D.: Quasiconvex programming. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, vol. 52, pp. 287–331. Cambridge University Press, MSRI, Cambridge (2005)Google Scholar
  21. 21.
    Eppstein, D., Dillencourt, M.B.: Uninscribable 4-regular polyhedron. Electronic Geometry Models p. 2003.08.001 (2003). http://www.eg-models.de/2003.08.001/
  22. 22.
    Eppstein, D., Mumford, E.: Steinitz theorems for orthogonal polyhedra. In: 26th Symposium on Computational Geometry, pp. 429–438. ACM (2010).Google Scholar
  23. 23.
    Fortes, M.A., Vaz, M.F., Cox, S.J., Teixeira, P.I.C.: Instabilities in two-dimensional flower and chain clusters of bubbles. Colloids Surf. A 309(1–3), 64–70 (2007)CrossRefGoogle Scholar
  24. 24.
    Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compos. Math. 6, 239–250 (1939).Google Scholar
  25. 25.
    Grinberg, È.J.: Plane homogeneous graphs of degree three without Hamiltonian circuits. In: Latvian Math. Yearbook 4, pp. 51–58. Izdat. “Zinatne”, Riga (1968)Google Scholar
  26. 26.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: 8th International Symposiun on Graph Drawing. Lecture Notes in Computer Science, vol. 1984, pp. 77–90. Springer, Berlin (2001)Google Scholar
  27. 27.
    Hales, T.C.: Cannonballs and honeycombs. Notices Am. Math. Soc. 47(4), 440–449 (2000)MathSciNetMATHGoogle Scholar
  28. 28.
    Hales, T.C.: The honeycomb conjecture. Discrete Comput. Geom. 25(1), 1–22 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Halin, R.: Studies on minimally \(n\)-connected graphs. In: Combinatorial Mathematics and Its Applications (Proc. Conf., Oxford, 1969), pp. 129–136. Academic Press, London (1971)Google Scholar
  30. 30.
    Hass, J., Schlafly, R.: Double bubbles minimize. Ann. Math. 151(2), 459–515 (2000)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Herdtle, T., Aref, H.: On the geometry of composite bubbles. Proc. Math. Phys. Sci. 434(1891), 441–447 (1991).Google Scholar
  32. 32.
    Hoffman, D.T.: Smart soap bubbles can do calculus. Math. Teach. 72(5), 377–385 (1979).Google Scholar
  33. 33.
    Hopcroft, J., Tarjan, R.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)Google Scholar
  34. 34.
    Hutchings, M., Morgan, F., Ritoré, M., Ros, A.: Proof of the double bubble conjecture. Ann. Math. 155(2), 459–489 (2002)CrossRefMATHGoogle Scholar
  35. 35.
    Isenberg, C.: The soap film: an analogue computer. Am. Sci. 64(5), 514–518 (1976).Google Scholar
  36. 36.
    Isenberg, C.: Chapter 5. The Laplace–Young Equation. In: The Science of Soap Films and Soap Bubbles. Dover, New York (1978)Google Scholar
  37. 37.
    Kimberling, C.: Triangle Centers and Central Triangles, vol. 129. Utilitas Math, Winnipeg (1998). http://faculty.evansville.edu/ck6/tcenters/tcct.html
  38. 38.
    Koźmiński, K., Kinnen, E.: An algorithm for finding a rectangular dual of a planar graph for use in area planning for VLSI integrated circuits. In: Proceedings of 21st Conference on Design Automation (DAC’84), pp. 655–656 (1984).Google Scholar
  39. 39.
    Leinwand, S.M., Lai, Y.T.: An algorithm for building rectangular floor-plans. In: Proceedings of 21st Conference on Design Automation (DAC’84), pp. 663–664 (1984).Google Scholar
  40. 40.
    Löffler, M., Nöllenburg, M.: Planar Lombardi drawings of outerpaths. In: 20th International Symposium, GD 2012, Redmond, WA, September 19–21, 2012, Revised Selected Papers. Lecture Notes in Computer Science, vol. 7704, pp. 561–562. Springer, Berlin (2013).Google Scholar
  41. 41.
    Mac Lane, S.: A structural characterization of planar combinatorial graphs. Duke Math. J. 3(3), 460–472 (1937)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Markström, K.: Extremal graphs for some problems on cycles in graphs. Congr. Numer. 171, 179–192 (2004)MathSciNetMATHGoogle Scholar
  43. 43.
    Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117(1–3), 257–263 (1993)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Morgan, F.: Geometric Measure Theory: A Beginner’s Guide, 4th edn. Academic, Boston (2009)Google Scholar
  45. 45.
    Plateau, J.A.F.: Statique Experimentale et Theorique des Liquides Soumis aux Seules Forces Moleculaires. Gauthier-Villiard, Paris (1873)Google Scholar
  46. 46.
    Pootheri, S.K.: Decomposition characterizations of classes of 2-connected graphs. In: 39th Southeast Conference ACM (2001)Google Scholar
  47. 47.
    Quinn, C.: Least-perimeter partitions of the sphere. Rose–Hulman Inst. Tech. Undergrad. Math. J. 8(2) (2007). http://www.rose-hulman.edu/mathjournal/archives/2007/vol8-n2/paper11/v8n2-11pd.pdf. Appendix by Quinn Maurmann
  48. 48.
    Ribó Mor, A., Rote, G., Schulz, A.: Small grid embeddings of 3-polytopes. Discrete Comput. Geom. 45(1), 65–87 (2011)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Schulz, A.: Drawing 3-polytopes with good vertex resolution. J. Graph Algorithms Appl. 15(1), 33–52 (2011)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Schwerdtfeger, H.: Geometry of Complex Numbers: Circle Geometry, Moebius Transformation, Non-Euclidean Geometry. Dover, New York (1979)Google Scholar
  51. 51.
    Steinitz, E.: Polyeder und Raumeinteilungen. In: Encyclopädie der mathematischen Wissenschaften, Band 3 (Geometries), pp. 1–139. B.G. Teubner, Leipzig (1922)Google Scholar
  52. 52.
    Stephenson, K.: Introduction to Circle Packing: The Theory of Discrete Analytic Functions. Cambridge University Press, Cambridge (2005)Google Scholar
  53. 53.
    Sullivan, J.M.: The geometry of bubbles and foams. In: Sadoc, J.F., Rivier, N. (eds.) Foams and Emulsions: Proceedings of NATO Advanced Study Institute on Foams and Emulsions, Emulsions and Cellular Materials, Cargèse, Corsica, 12–24 May, 1997, NATO Adv. Sci. Inst. Ser. E vol. 354, pp. 379–402. Kluwer, Dordrecht (1999).Google Scholar
  54. 54.
    Taylor, J.E.: The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. 103(3), 489–539 (1976)CrossRefMATHGoogle Scholar
  55. 55.
    Thompson, W.: On the division of space with minimum partitional area. Philos. Mag. 24(151), 503 (1887)CrossRefGoogle Scholar
  56. 56.
    Tutte, W.T.: On Hamiltonian circuits. J. Lond. Math. Soc. 21(2), 98–101 (1946)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Ungar, P.: On diagrams representing maps. J. Lond. Math. Soc. 28, 336–342 (1953)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Weaire, D., Cox, S.J., Graner, F.: Uniqueness, stability and Hessian eigenvalues for two-dimensional bubble clusters. Eur. Phys. J. E 7(2), 123–127 (2002)CrossRefGoogle Scholar
  59. 59.
    Weaire, D., Phelan, R.: A counter-example to Kelvin’s conjecture on minimal surfaces. Philos. Mag. Lett. 69, 107–110 (1994)CrossRefGoogle Scholar
  60. 60.
    Wichiramala, W.: The Planar Triple Bubble Problem. Ph.D. thesis, University of Illinois at Urbana-Champaign (2002). http://www.math.sc.chula.ac.th/~wacharin/old/maths/thesisss.pdf

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations