Discrete & Computational Geometry

, Volume 51, Issue 3, pp 516–538 | Cite as

On Discrete Constant Mean Curvature Surfaces



Recently, a curvature theory for polyhedral surfaces has been established that associates with each face a mean curvature value computed from areas and mixed areas of that face and its corresponding Gaussian image face. Therefore, a study of constant mean curvature (cmc) surfaces requires studying pairs of polygons with some constant nonvanishing value of the discrete mean curvature for all faces. We focus on meshes where all faces are planar quadrilaterals or planar hexagons. We show an incidence geometric characterization of a pair of parallel quadrilaterals having a discrete mean curvature value of −1. This characterization yields an integrability condition for a mesh being a Gaussian image mesh of a discrete cmc surface. Thus, we can use these geometric results for the construction of discrete cmc surfaces. In the special case where all faces have a circumcircle, we establish a discrete Weierstrass-type representation for discrete cmc surfaces.


Discrete differential geometry Discrete curvatures Discrete cmc surfaces Discrete Weierstrass representation Oriented mixed area Geometric configurations 



This research was supported by the DFG Collaborative Research Center TRR 109, “Discretization in Geometry and Dynamics” through grant I 706-N26 of the Austrian Science Fund (FWF).


  1. 1.
    Bobenko, A.I., Hoffmann, T., Springborn, B.: Minimal surfaces from circle patterns: geometry from combinatorics. Ann. Math. 164, 231–264 (2006) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bobenko, A.I., Pinkall, U.: Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208 (1996) MATHMathSciNetGoogle Scholar
  3. 3.
    Bobenko, A.I., Pottmann, H., Wallner, J.: A curvature theory for discrete surfaces based on mesh parallelity. Math. Ann. 348, 1–24 (2010) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bobenko, A.I., Suris, Yu.B.: Discrete Differential Geometry: Integrable Structure. Graduate Studies in Math., vol. 98. Am. Math. Soc., Providence (2008) CrossRefGoogle Scholar
  5. 5.
    Eschenburg, J.H., Jost, J.: Differentialgeometrie und Minimalflächen. Springer, Berlin (2007) MATHGoogle Scholar
  6. 6.
    Hertrich-Jeromin, U., Hoffmann, T., Pinkall, U.: A discrete version of the Darboux transform for isothermic surfaces. In: Discrete Integrable Geometry and Physics, Vienna, 1996. Oxford Lecture Ser. Math. Appl., vol. 16, pp. 59–81. Oxford University Press, New York (1999) Google Scholar
  7. 7.
    Hoffmann, T.: Discrete rotational cmc surfaces and the elliptic billiard. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics, pp. 117–124. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  8. 8.
    Hoffmann, T.: Discrete cmc surfaces and discrete holomorphic maps. In: Discrete Integrable Geometry and Physics, Vienna, 1996. Oxford Lecture Ser. Math. Appl., vol. 16, pp. 97–112. Oxford University Press, New York (1999) Google Scholar
  9. 9.
    Kenmotsu, K.: Weierstrass formula for surfaces of prescribed mean curvature. Math. Ann. 245(2), 89–99 (1979) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Kenmotsu, K.: Surfaces with Constant Mean Curvature. Translations of Mathematical Monographs, vol. 221. Am. Math. Soc., Providence (2003) MATHGoogle Scholar
  11. 11.
    Liu, Y., Wang, W.: On vertex offsets of polyhedral surfaces. In: Proc. of Advances in Architectural Geometry, pp. 61–64 (2008). TU Wien Google Scholar
  12. 12.
    Meeks, W.H. III, Pérez, J.: The classical theory of minimal surfaces. Bull. Am. Math. Soc. (N. S.) 48(3), 325–407 (2011) CrossRefMATHGoogle Scholar
  13. 13.
    Müller, C., Wallner, J.: Oriented mixed area and discrete minimal surfaces. Discrete Comput. Geom. 43, 303–320 (2010) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 15–36 (1993) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Pinkall, U., Sterling, I.: On the classification of constant mean curvature tori. Ann. Math. (2) 130(2), 407–451 (1989) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Pottmann, H., Liu, Y., Wallner, J., Bobenko, A.I., Wang, W.: Geometry of multi-layer freeform structures for architecture. ACM Trans. Graphics 26(3), Article 65, 1–11 (2007) Google Scholar
  17. 17.
    Sauer, R.: Differenzengeometrie. Springer, Berlin (1970) CrossRefMATHGoogle Scholar
  18. 18.
    Schief, W.K.: On the unification of classical and novel integrable surfaces. II. Difference geometry. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 459(2030), 373–391 (2003) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Schief, W.K.: On a maximum principle for minimal surfaces and their integrable discrete counterparts. J. Geom. Phys. 56(9), 1484–1495 (2006) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Sullivan, J.M.: Curvatures of smooth and discrete surfaces. In: Discrete Differential Geometry. Oberwolfach Semin, vol. 38, pp. 175–188. Birkhäuser, Basel (2008) CrossRefGoogle Scholar
  21. 21.
    Wente, H.C.: Counterexample to a conjecture of H. Hopf. Pac. J. Math. 121(1), 193–243 (1986) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Discrete Mathematics and GeometryVienna University of TechnologyViennaAustria

Personalised recommendations