Discrete & Computational Geometry

, Volume 50, Issue 2, pp 330–353 | Cite as

Morse Theory for Filtrations and Efficient Computation of Persistent Homology

Article

Abstract

We introduce an efficient preprocessing algorithm to reduce the number of cells in a filtered cell complex while preserving its persistent homology groups. The technique is based on an extension of combinatorial Morse theory from complexes to filtrations.

Keywords

Computational topology Discrete Morse theory Persistent homology 

References

  1. 1.
    Carlsson, G.: Topology and data. Bull. Am. Math. Soc. (N.S.) 46(2), 255–308 (2009)Google Scholar
  2. 2.
    Chari, M.K.: On discrete Morse functions and combinatorial decompositions. In: Proc. Formal Power Series and Algebraic Combinatorics (Vienna) (1997). Discrete Math. 217(1–3), 101–113 (2000)Google Scholar
  3. 3.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Delfinado, C.J.A., Edelsbrunner, H.: An incremental algorithm for Betti numbers of simplicial complexes on the \(3\)-sphere: Grid generation, finite elements, and geometric design. Comput. Aided Geom. Des. 12(7), 771–784 (1995)Google Scholar
  5. 5.
    Dumas, J.-G., Heckenbach, F., Saunders, D., Welker, V.: Computing simplicial homology based on efficient Smith normal form algorithms. In: Joswig, M., Takayama, N. (eds.) Algebra, Geometry, and Software Systems, pp. 177–206. Springer, Berlin (2003)Google Scholar
  6. 6.
    Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Surveys on Discrete and Computational Geometry, Contemporary Mathematics, vol. 453, pp. 257–282. American Mathematical Society, Providence (2008)Google Scholar
  7. 7.
    Edelsbrunner, H., Harer, J.L.: Computational Topology. American Mathematical Society, Providence, RI. An introduction (2010)Google Scholar
  8. 8.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Discrete and Computational Geometry and Graph Drawing (Columbia, SC) (2001). Discrete Comput. Geom. 28(4), 511–533 (2002)Google Scholar
  9. 9.
    Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. (N.S.), 45(1), 61–75 (2008)Google Scholar
  11. 11.
    Gunther, D., Reininghaus, J., Wagner, H., Hotz, I.: Memory efficient computation of persistent homology for 3d image data using discrete Morse theory. In: Proceedings of Conference on Graphics, Patterns and Images, 24 (to appear)Google Scholar
  12. 12.
    Hafner, J., McCurley, K.: Asymptotically fast triangularization of matrices over rings. SIAM J. Comput. 20(6), 1068–1083 (1991)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Harker, S., Mischaikow, K., Mrozek, M., Nanda, V., Wagner, H., Juda, M., Dlotko, P.: The efficiency of a homology algorithm based on discrete Morse theory and coreductions. In: Proceedings of the 3rd International Workshop on Computational Topology in Image Context, Image A, vol. 1, pp. 41–47 (2010)Google Scholar
  14. 14.
    Harker, S., Mischaikow, K., Mrozek, M., Nanda, V.: Discrete Morse theoretic algorithms for computing homology of complexes and maps. Found. Comput. Math. (2013). doi:10.1007/s10208-013-9145-0 Google Scholar
  15. 15.
    Joswig, M., Pfetsch, M.: Computing optimal Morse matchings. SIAM J. Discrete Math 20(1), 11–25 (2006)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kozlov, D.: Discrete Morse theory for free chain complexes. C. R. Math. 340, 867–872 (2005)MATHCrossRefGoogle Scholar
  17. 17.
    Kozlov, D.: Combinatorial Algebraic Topology. Algorithms and Computation in Mathematics, vol. 21. Springer, Berlin (2008)Google Scholar
  18. 18.
    Lefschetz, S.: Algebraic Topology. American Mathematical Society Colloquium Publications, vol. 27. American Mathematical Society, New York (1942)Google Scholar
  19. 19.
    Lewiner, T.: Geometric discrete Morse complexes. Ph.D. Dissertation. Department of Mathematics, PUC-Rio. http://thomas.lewiner.org/pdfs/tomlew_phd_puc.pdf (2005)
  20. 20.
    Lewiner, T., Lopes, H., Tavares, G.: Toward optimality in discrete Morse theory. Exp. Math. 12(3), 271–286 (2003)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Milosavljevic, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry (SCG’11), pp. 216–225, Paris (2011)Google Scholar
  22. 22.
    Morozov, D.: Persistence Algorithm Takes Cubic Time in the Worst Case. BioGeometry News, Department of Computer Science, Duke University, Durham (2005)Google Scholar
  23. 23.
    Mrozek, M., Batko, B.: The coreduction homology algorithm. Discrete Comput. Geom. 41, 96–118 (2009)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Mrozek, M., Wanner, T.: Coreduction homology algorithm for inclusions and persistent homology. Comput. Math. Appl. 60(10), 2812–2833 (2010)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Munkres, J.R.: Elements of Algebraic Topology. The Benjamin/Cummings Publishing Company, Inc., Menlo Park (1984)MATHGoogle Scholar
  26. 26.
    Perseus, the Persistent Homology Software. http://www.math.rutgers.edu/vidit/perseus
  27. 27.
    Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell., 1–14 (2010)Google Scholar
  28. 28.
    Saunders, B.D., Wan, Z.: Smith normal form of dense integer matrices, fast algorithms into practice. In: The International Symposium on Symbolic and Algebraic Computation, pp. 274–281 (2004)Google Scholar
  29. 29.
    Spanier, E.H.: Algebraic Topology. McGraw-Hill Book Co., New York (1966)MATHGoogle Scholar
  30. 30.
    Storjohann, A.: Nearly optimal algorithms for computing Smith normal forms of integer matrices, vol. 96. In: Proceedings of ISSAC, pp. 267–274 (1996)Google Scholar
  31. 31.
    Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Tucker, A.W.: Cell spaces. Ann. Math. 37, 92–100 (1936)CrossRefGoogle Scholar
  33. 33.
    Wagner, H., Chen, C., Vucini, E.: Efficient computation of persistent homology for cubical data. In: Topological Methods in Data Analysis and Visualization II, pp. 91–106 (2012)Google Scholar
  34. 34.
    Zomorodian, A.: Topology for Computing, Cambridge Monographs on Applied and Computational Mathematics, vol. 16. Cambridge University Press, Cambridge, MA (2005)Google Scholar
  35. 35.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematics and BioMaPSRutgers, The State University of New JerseyPiscatawayUSA
  2. 2.Department of MathematicsThe University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations