Discrete & Computational Geometry

, Volume 49, Issue 4, pp 747–777 | Cite as

The 2-Page Crossing Number of \(K_{n}\)

  • Bernardo M. Ábrego
  • Oswin Aichholzer
  • Silvia Fernández-Merchant
  • Pedro Ramos
  • Gelasio Salazar
Article

Abstract

Around 1958, Hill described how to draw the complete graph \(K_n\) with
$$\begin{aligned} Z(n) :=\frac{1}{4}\Big \lfloor \frac{n}{2}\Big \rfloor \Big \lfloor \frac{n-1}{2}\Big \rfloor \Big \lfloor \frac{n-2}{2}\Big \rfloor \Big \lfloor \frac{n-3}{2}\Big \rfloor \end{aligned}$$
crossings, and conjectured that the crossing number \({{\mathrm{cr}}}(K_{n})\) of \(K_n\) is exactly \(Z(n)\). This is also known as Guy’s conjecture as he later popularized it. Towards the end of the century, substantially different drawings of \(K_{n}\) with \(Z(n)\) crossings were found. These drawings are 2-page book drawings, that is, drawings where all the vertices are on a line \(\ell \) (the spine) and each edge is fully contained in one of the two half-planes (pages) defined by \(\ell \). The 2-page crossing number of \(K_{n} \), denoted by \(\nu _{2}(K_{n})\), is the minimum number of crossings determined by a 2-page book drawing of \(K_{n}\). Since \({{\mathrm{cr}}}(K_{n}) \le \nu _{2}(K_{n})\) and \(\nu _{2}(K_{n}) \le Z(n)\), a natural step towards Hill’s Conjecture is the weaker conjecture \(\nu _{2}(K_{n}) = Z(n)\), popularized by Vrt’o. In this paper we develop a new technique to investigate crossings in drawings of \(K_{n}\), and use it to prove that \(\nu _{2}(K_{n}) = Z(n) \). To this end, we extend the inherent geometric definition of \(k\)-edges for finite sets of points in the plane to topological drawings of \(K_{n}\). We also introduce the concept of \({\le }{\le }k\)-edges as a useful generalization of \({\le }k\)-edges and extend a powerful theorem that expresses the number of crossings in a rectilinear drawing of \(K_{n}\) in terms of its number of \({\le }k\)-edges to the topological setting. Finally, we give a complete characterization of crossing minimal 2-page book drawings of \(K_{n}\) and show that, up to equivalence, they are unique for \(n\) even, but that there exist an exponential number of non homeomorphic such drawings for \(n\) odd.

Keywords

Crossing number Topological drawing Complete graph Book drawing 2-Page drawing 

Mathematics Subject Classification (2000)

05C10 68R10 52C10 57R15 

References

  1. 1.
    Ábrego, B.M., Fernández-Merchant, S.: A lower bound for the rectilinear crossing number. Graphs Combin. 21, 293–300 (2005)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ábrego, B.M., Cetina, M., Fernández-Merchant, S., Leaños, J., Salazar, G.: 3-Symmetric and 3-decomposable geometric drawings of \(K_n\). Discr. Appl. Math. 158, 1240–1258 (2010)MATHCrossRefGoogle Scholar
  3. 3.
    Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.: The \(2\)-page crossing number of \(K_n\). In 28th Annual ACM Symposium on Computational Geometry, pp. 397–403. Chapel Hill, NC (2012)Google Scholar
  4. 4.
    Ábrego, B.M., Cetina, M., Fernández-Merchant, S., Leaños, J., Salazar, G.: On \(k\)-edges, crossings, and halving lines of geometric drawings of \(K_n\). Discrete Comput. Geom. 48, 192–215 (2012)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ábrego, B.M., Fernández-Merchant, S., Salazar, G.: The rectilinear crossing number of \(K_n\): closing in (or are we?). In: Pach, J. (ed.) Thirty Essays in Geometric Graph Theory, pp. 5–18. Springer, New York (2012)Google Scholar
  6. 6.
    Beineke, L., Wilson, R.: The early history of the brick factory problem. Math. Intell. 32, 41–48 (2010)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bilski, T.: Embeddings graphs in books: a survey. IEEE Proc. Comput. Digit. Tech. 139, 134–138 (1992)CrossRefGoogle Scholar
  8. 8.
    Blažek, J., Koman, M.: A minimal problem concerning complete plane graphs. In: Fiedler, M. (ed.) Theory of Graphs and Its Applications, pp. 113–117. Czech Academy of Science, Prague (1964)Google Scholar
  9. 9.
    Buchheim, C., Zheng, L.: Fixed linear crossing minimization by reduction to the maximum cut problem. In: COCOON, pp. 507–516. Springer, Berlin (2006)Google Scholar
  10. 10.
    Cetina, M., Hernández-Vélez, C., Leaños, J., Villalobos, C.: Point sets that minimize \((\le k)\)-edges, 3-decomposable drawings, and the rectilinear crossing number of \(K_n\). Discr. Math. 311, 1646–1657 (2011)MATHCrossRefGoogle Scholar
  11. 11.
    Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a layout problem with applications to vsli design. SIAM J. Algebr. Discr. Math. 8, 33–58 (1987)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cimikowski, R., Mumey, B.: Approximating the fixed linear crossing number. Discr. Appl. Math. 155, 2202–2210 (2007)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Damiani, E., D’Antona, O., Salemi, P.: An upper bound to the crossing number of the complete graph drawn on the pages of a book. J. Combin. Inf. Syst. Sci. 19, 75–84 (1994)MathSciNetMATHGoogle Scholar
  14. 14.
    de Klerk, E., Pasechnik, D.V.: Improved lower bounds for the 2-page crossing numbers of \(K_{m, n}\) and \(K_{n}\) via semidefinite programming. SIAM J. Optim. 22, 581–595 (2011)Google Scholar
  15. 15.
    de Klerk, E., Pasechnik, D.V., Schrijver, A.: Reduction of symmetric semidefinite programs using the regular *-representation. Math. Progr. 109, 613–624 (2007)MATHCrossRefGoogle Scholar
  16. 16.
    Dujmović, V., Wood, D.: On linear layouts of graphs. Discr. Math. Theor. Comput. Sci. 6, 339–358 (2004)MATHGoogle Scholar
  17. 17.
    Guy, R.K.: A combinatorial problem. Bull. Malayan Math. Soc. 7, 68–72 (1960)Google Scholar
  18. 18.
    Guy, R.K., Jenkyns, T., Schaer, J.: The toroidal crossing number of the complete graph. J. Combin. Theory 4, 376–390 (1968)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Harary, F., Hill, A.: On the number of crossings in a complete graph. Proc. Edinb. Math. Soc. 13, 333–338 (1963)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Harborth, H.: Special numbers of crossings for complete graphs. Discr. Math. 224, 95–102 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Knuth, D.: Axioms and Hulls. Lecture Notes in Computer Science, vol. 606. Springer, Heidelberg (1992).Google Scholar
  22. 22.
    Lovász, L., Vesztergombi, K., Wagner, U., Welzl, E.: Convex quadrilaterals and \(k\)-sets. In Pach, J. (ed.) Contemporary Mathematics Series, AMS 2004, vol. 342, pp. 139–148. American Mathematical Society, Providence (2004)Google Scholar
  23. 23.
    Shahrokhi, F., Sýkora, O., Székely, L.A., Vrt’o, I.: The book crossing number of a graph. J. Graph Theory 21, 413–424 (1996)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Vrt’o. I.: Two special crossing number problems for complete graphs. In: Abstracts of the 6th Slovenian International Conference on Graph Theory Bled’07, p. 60, Slovenia, 2007.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bernardo M. Ábrego
    • 1
  • Oswin Aichholzer
    • 2
  • Silvia Fernández-Merchant
    • 1
  • Pedro Ramos
    • 3
  • Gelasio Salazar
    • 4
  1. 1.Department of MathematicsCalifornia State UniversityNorthridgeUSA
  2. 2.Institute for Software TechnologyGraz University of TechnologyGrazAustria
  3. 3.Departamento de Física y MatemáticasUniversidad de AlcaláAlcalá de HenaresSpain
  4. 4.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations