Discrete & Computational Geometry

, Volume 49, Issue 3, pp 540–557 | Cite as

Sporadic Reinhardt Polygons



Let \(n\) be a positive integer, not a power of two. A Reinhardt polygon is a convex \(n\)-gon that is optimal in three different geometric optimization problems: it has maximal perimeter relative to its diameter, maximal width relative to its diameter, and maximal width relative to its perimeter. For almost all \(n\), there are many Reinhardt polygons with \(n\) sides, and many of them exhibit a particular periodic structure. While these periodic polygons are well understood, for certain values of \(n\), additional Reinhardt polygons exist, which do not possess this structured form. We call these polygons sporadic. We completely characterize the integers \(n\) for which sporadic Reinhardt polygons exist, showing that these polygons occur precisely when \(n=pqr\) with \(p\) and \(q\) distinct odd primes and \(r\ge 2\). We also prove that a positive proportion of the Reinhardt polygons with \(n\) sides is sporadic for almost all integers \(n\), and we investigate the precise number of sporadic Reinhardt polygons that are produced for several values of \(n\) by a construction that we introduce.


Reinhardt polygon Reinhardt polynomial Isodiametric problem Isoperimetric problem Diameter Perimeter Width 

Mathematics Subject Classification (2000)

Primary: 52B60 Secondary: 11R09 52A10 52B05 


  1. 1.
    Audet, C., Hansen, P., Messine, F.: Isoperimetric polygons of maximum width. Discrete Comput. Geom. 41(1), 45–60 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bezdek, A., Fodor, F.: On convex polygons of maximal width. Arch. Math. (Basel) 74(1), 75–80 (2000)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Datta, B.: A discrete isoperimetric problem. Geom. Dedicata 64(1), 55–68 (1997)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    de Bruijn, N.G.: On the factorization of cyclic groups. Nederl. Akad. Wetensch. Proc. Ser. A. 15, 370–377 (1953)Google Scholar
  5. 5.
    Gashkov, S.: Inequalities for convex polygons and Reinhardt polygons. Mat. Prosveshchenye (3) 11, 91–103 (2007) (Russian)Google Scholar
  6. 6.
    Larman, D.G., Tamvakis, N.K.: The decomposition of the \(n\)-sphere and the boundaries of plane convex domains. In: Convexity and Graph Theory (Jerusalem, 1981). North-Holland Mathematics Studies, vol. 87, pp. 209–214. North-Holland, Amsterdam (1984)Google Scholar
  7. 7.
    Mossinghoff, M.J.: A $1 problem. Am. Math. Monthly 113(5), 385–402 (2006)Google Scholar
  8. 8.
    Mossinghoff, M.J.: Isodiametric problems for polygons. Discrete Comput. Geom. 36(2), 363–379 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Mossinghoff, M.J.: Enumerating isodiametric and isoperimetric polygons. J. Comb. Theory Ser. A 118(6), 1801–1815 (2011)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Rédei, L.: Über das Kreisteilungspolynom. Acta Math. Acad. Sci. Hung. 5, 27–28 (1954)MATHCrossRefGoogle Scholar
  11. 11.
    Reinhardt, K.: Extremale Polygone gegebenen Durchmessers, Jahresber. Deutsch. Math.-Verein. 31, 251–270 (1922)Google Scholar
  12. 12.
    Schoenberg, I.J.: A note on the cyclotomic polynomial. Mathematika 11, 131–136 (1964)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Vincze, S.: On a geometrical extremum problem. Acta Sci. Math. Szeged. 12, 136–142 (1950)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada
  2. 2.Department of MathematicsDavidson CollegeDavidsonUSA

Personalised recommendations