Discrete & Computational Geometry

, Volume 49, Issue 2, pp 200–220 | Cite as

Asymptotics for Some Combinatorial Characteristics of the Convex Hull of a Poisson Point Process in the Clifford Torus



Let \(\mathcal P _\lambda \) be a homogeneous Poisson point process of rate \(\lambda \) in the Clifford torus \(T^2\subset \mathbb E ^4\). Let \((f_0, f_1, f_2, f_3)\) be the \(f\)-vector of conv\(\,\mathcal P _\lambda \) and let \(\bar{v}\) be the mean valence of a vertex of the convex hull. Asymptotic expressions for \(\mathsf E \, f_1\), \(\mathsf E \, f_2\), \(\mathsf E \, f_3\) and \(\mathsf E \, \bar{v}\) as \(\lambda \rightarrow \infty \) are proved in this paper.


Clifford torus Poisson point process Random polytope Poisson–voronoi tessellation 


  1. 1.
    Buchstaber, V.M., Panov, T.E.: Torus Actions and Their Applications in Topology and Combinatorics. University Lecture Series, vol. 24. American Mathematical Society, Providence (2002)Google Scholar
  2. 2.
    Dam, T., Sørensen, J.B., Thomsen, M.H.: Spatial Point Processes. Models, Simulation and Statistical Inference. Aalborg University, Aalborg (1999)Google Scholar
  3. 3.
    Dolbilin, N., Tanemura, M.: Voronoi tilings for the Clifford torus in a 3-sphere. In: Voronoi’s Impact on Modern Science, Book 4, vol. 1, pp. 210–219. Institute of Mathematics, Kyiv (2008)Google Scholar
  4. 4.
    Graves, L.: The Theory of Functions of a Real Variable. McGraw-Hill, New York (1946)Google Scholar
  5. 5.
    Mecke, J.: Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. Zeitschrift für Wahrscheinlichskeitstheorie und Verwandte Gebiete 9, 36–58 (1967)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Meijering, J.L.: Interface area, edge length, and number of vertices in crystal aggregates with random nucleation. Philips Res. Rep. 8, 270–290 (1953)MATHGoogle Scholar
  7. 7.
    Rogers, C.A.: Packing and Covering. Cambridge University Press, Cambridge (2008)Google Scholar
  8. 8.
    Shiryaev, A.N.: Probability. Graduate Texts in Mathematics. Springer, New York (1996)Google Scholar
  9. 9.
    Weil, W., Wieacker, J.A.: Stochastic geometry. In: Handbook of Convex Geometry, vol. B, pp. 1391–1498. North-Holland, Amsterdam (1993)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations