Discrete & Computational Geometry

, Volume 49, Issue 2, pp 402–410 | Cite as

Cutting the Same Fraction of Several Measures

Article

Abstract

We study some measure partition problems: Cut the same positive fraction of d+1 measures in ℝd with a hyperplane or find a convex subset of ℝd on which d+1 given measures have the same prescribed value. For both problems positive answers are given under some additional assumptions.

Keywords

The ham sandwich theorem Balanced partition 

References

  1. 1.
    Aronov, B., Hubard, A.: Convex equipartitions of volume and surface area. arXiv preprint: arXiv:1010.4611 (2010)
  2. 2.
    Bárány, I., Hubard, A., Jerónimo, J.: Slicing convex sets and measures by a hyperplane. Discrete Comput. Geom. 39, 67–75 (2008). 10.1007/s00454-007-9021-2 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bereg, S., Kano, M.: Balanced line for a 3-colored point set in the plane. Electron. J. Comb. 19(1), P33 (2012) MathSciNetGoogle Scholar
  4. 4.
    Blagojević, P.V.M., Blagojević, A.S.D.: Using equivariant obstruction theory in combinatorial geometry. Topol. Appl. 154(14), 2635–2655 (2007). doi:10.1016/j.topol.2007.04.007 MATHCrossRefGoogle Scholar
  5. 5.
    Borsuk, K.: Drei sätze über die n-dimensionale euklidische Sphäre. Fundam. Math. 20(1), 177–190 (1933) Google Scholar
  6. 6.
    Breuer, F.: Uneven splitting of ham sandwiches. Discrete Comput. Geom. 43(4), 876–892 (2010) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Hopf, H.: Über die Sehnen ebener Kontinuen und die Schleifen geschlossener Wege. Comment. Math. Helv. 9, 303–319 (1936). 10.1007/BF01258195 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Karasev, R.N.: Theorems of Borsuk-Ulam type for flats and common transversals of families of convex compact sets. Sb. Math. 200(10), 1453–1471 (2009). doi:10.1070/SM2009v200n10ABEH004045 MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Karasev, R.N.: Equipartition of several measures. arXiv preprint: arXiv:1011.4762 (2010)
  10. 10.
    Levy, P.: Sur une généralisation du théorème de Rolle. C. R. Acad. Sci., Paris 198, 424–425 (1934) Google Scholar
  11. 11.
    Matoušek, J.: Using the Borsuk–Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry. Springer, Berlin (2003) MATHGoogle Scholar
  12. 12.
    Soberón, P.: Balanced convex partitions of measures in ℝd. Mathematika 58(1), 71–76 (2012). doi:10.1112/S0025579311001914 MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Steinhaus, H.: Sur la division des ensembles de l’espace par les plans et des ensembles plans par les cercles. Fundam. Math. 33, 245–263 (1945) MathSciNetMATHGoogle Scholar
  14. 14.
    Stone, A.H., Tukey, J.W.: Generalized “sandwich” theorems. Duke Math. J. 9(2), 356–359 (1942) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Stromquist, W., Woodall, D.: Sets on which several measures agree. J. Math. Anal. Appl. 108, 241–248 (1985). doi:10.1016/0022-247X(85)90021-6 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for Information Transmission Problems RASMoscowRussia
  2. 2.B.N. Delone International Laboratory “Discrete and Computational Geometry”P.G. Demidov Yaroslavl State UniversityYaroslavl’Russia
  3. 3.Dept. of MathematicsMoscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations