Discrete & Computational Geometry

, Volume 48, Issue 1, pp 142–191 | Cite as

Multitriangulations, Pseudotriangulations and Primitive Sorting Networks



We study the set of all pseudoline arrangements with contact points which cover a given support. We define a natural notion of flip between these arrangements and study the graph of these flips. In particular, we provide an enumeration algorithm for arrangements with a given support, based on the properties of certain greedy pseudoline arrangements and on their connection with sorting networks. Both the running time per arrangement and the working space of our algorithm are polynomial.

As the motivation for this work, we provide in this paper a new interpretation of both pseudotriangulations and multitriangulations in terms of pseudoline arrangements on specific supports. This interpretation explains their common properties and leads to a natural definition of multipseudotriangulations, which generalizes both. We study elementary properties of multipseudotriangulations and compare them to iterations of pseudotriangulations.


Pseudoline arrangement Pseudotriangulation Multitriangulation Flip Sorting network Enumeration algorithm 


  1. 1.
    Aichholzer, O., Aurenhammer, F., Krasser, H., Speckmann, B.: Convexity minimizes pseudo-triangulations. Comput. Geom. 28(1), 3–10 (2004) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Aichholzer, O., Orden, D., Santos, F., Speckmann, B.: On the number of pseudo-triangulations of certain point sets. J. Comb. Theory, Ser. A 115(2), 254–278 (2008) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Angelier, P., Pocchiola, M.: A sum of squares theorem for visibility complexes and applications. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry, the Goodman-Pollack Festschrift. Algorithms Combin., vol. 25, pp. 79–139. Springer, Berlin (2003) Google Scholar
  4. 4.
    Bereg, S.: Transforming pseudo-triangulations. Inf. Process. Lett. 90(3), 141–145 (2004) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bereg, S.: Enumerating pseudo-triangulations in the plane. Comput. Geom. 30(3), 207–222 (2005) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 46. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar
  7. 7.
    Brönnimann, H., Kettner, L., Pocchiola, M., Snoeyink, J.: Counting and enumerating pointed pseudotriangulations with the greedy flip algorithm. SIAM J. Comput. 36(3), 721–739 (2006) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bokowski, J., Pilaud, V.: On symmetric realizations of the simplicial complex of 3-crossing-free sets of diagonals of the octagon. In: Proc. 25th Canadian Conference on Computational Geometry (2009) Google Scholar
  9. 9.
    Capoyleas, V., Pach, J.: A Turán-type theorem on chords of a convex polygon. J. Comb. Theory, Ser. A 56(1), 9–15 (1992) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    de Bruijn, N.G.: Sorting by means of swappings. Discrete Math. 9, 333–339 (1974) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Dress, A.W.M., Klucznik, M., Koolen, J.H., Moulton, V.: Open image in new window: note on extremal combinatorics of cyclic split systems. Sém. Lothar. Combin. 47, Article B47b (2001), 17 pp. (electronic) Google Scholar
  12. 12.
    Dress, A.W.M., Koolen, J.H., Moulton, V.: On line arrangements in the hyperbolic plane. Eur. J. Comb. 23(5), 549–557 (2002) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Goodman, J.E.: Pseudoline arrangements. In: Handbook of Discrete and Computational Geometry. CRC Press Ser. Discrete Math. Appl., pp. 83–109. CRC, Boca Raton (1997) Google Scholar
  14. 14.
    Grünbaum, B.: Arrangements and Spreads. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, vol. 10. American Mathematical Society, Providence (1972) MATHGoogle Scholar
  15. 15.
    Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H., Souvaine, D., Streinu, I., Whiteley, W.: Planar minimally rigid graphs and pseudo-triangulations. Comput. Geom. 31(1–2), 31–61 (2005) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Habert, L., Pocchiola, M.: Computing pseudotriangulations via branched coverings. Preprint, arXiv:1102.0151. Abbreviated partial version in 20th European Workshop on Comput. Geom. (Seville, 2004), pp. 111–114 (2007)
  17. 17.
    Habert, L., Pocchiola, M.: Arrangements of double pseudolines. Preprint, arXiv:1101.1022. Abbreviated version in 25th Annual ACM Symposium on Comput. Geom. (Aahrus, 2009), pp. 314–323 (2009)
  18. 18.
    Hohlweg, C., Lange, C.E.M.C.: Realizations of the associahedron and cyclohedron. Discrete Comput. Geom. 37(4), 517–543 (2007) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Jonsson, J.: Generalized triangulations of the n-gon. Unpublished manuscript. An abstract was included in Topological and Geometric Combinatorics, April 2003, Mathematisches Forschungsinstitut Oberwolfach, Report No. 16 (2003) Google Scholar
  20. 20.
    Jonsson, J.: Generalized triangulations and diagonal-free subsets of stack polyominoes. J. Comb. Theory, Ser. A 112(1), 117–142 (2005) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kettner, L., Kirkpatrick, D., Mantler, A., Snoeyink, J., Speckmann, B., Takeuchi, F.: Tight degree bounds for pseudo-triangulations of points. Comput. Geom. 25, 3–12 (2003) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Knutson, A., Miller, E.: Subword complexes in Coxeter groups. Adv. Math. 184(1), 161–176 (2004) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Knuth, D.E.: The Art of Computer Programming, vol. 3. Addison-Wesley, Reading (1973). Sorting and Searching, Addison-Wesley Series in Computer Science and Information Processing Google Scholar
  24. 24.
    Knuth, D.E.: Axioms and Hulls. Lecture Notes in Computer Science, vol. 606. Springer, Berlin (1992) MATHCrossRefGoogle Scholar
  25. 25.
    Nakamigawa, T.: A generalization of diagonal flips in a convex polygon. Theor. Comput. Sci. 235(2), 271–282 (2000) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Pilaud, V.: Multitriangulations, pseudotriangulations and some problems of realization of polytopes. Ph.D. thesis, Université Paris 7 & Universidad de Cantabria (2010) Google Scholar
  27. 27.
    Pilaud, V., Pocchiola, M.: Multipseudotriangulations. In: 25th European Workshop on Comput. Geom., Bruxelles (2009). Extended abstract Google Scholar
  28. 28.
    Pilaud, V., Santos, F.: Multitriangulations as complexes of star polygons. Discrete Comput. Geom. 41(2), 284–317 (2009) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Pilaud, V., Santos, F.: The brick polytope of a sorting network. Eur. J. Comb. 33(4), 632–662 (2012) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Pilaud, V., Stump, C.: Brick polytopes of spherical subword complexes: A new approach to generalized associahedra. Preprint, arXiv:1111.3349 (2011)
  31. 31.
    Pocchiola, M.: Horizon trees versus pseudo-triangulations. In: 13th European Workshop on Comput. Geom., Würzburg (1997) Google Scholar
  32. 32.
    Pocchiola, M., Vegter, G.: Order types and visibility types of configurations of disjoint convex plane sets. Technical report, LIENS, Paris (1994) Google Scholar
  33. 33.
    Pocchiola, M., Vegter, G.: Pseudo-triangulations: theory and applications. In: 12th Annual ACM Symposium on Comput. Geom., Philadelphia, pp. 291–300 (1996) Google Scholar
  34. 34.
    Pocchiola, M., Vegter, G.: Topologically sweeping visibility complexes via pseudotriangulations. Discrete Comput. Geom. 16(4), 419–453 (1996) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Pocchiola, M., Vegter, G.: The visibility complex. Int. J. Comput. Geom. Appl. 6(3), 279–308 (1996) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Rote, G., Santos, F., Streinu, I.: Expansive motions and the polytope of pointed pseudo-triangulations. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry, The Goodman-Pollack Festschrift. Algorithms Combin., vol. 25, pp. 699–736. Springer, Berlin (2003) CrossRefGoogle Scholar
  37. 37.
    Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations—a survey. In: Surveys on Discrete and Computational Geometry. Contemp. Math., vol. 453, pp. 343–410. Am. Math. Soc., Providence (2008) CrossRefGoogle Scholar
  38. 38.
    Rubey, M.: Maximal 0–1 fillings of moon polyominoes with restricted chain-lengths and RC-graphs. Preprint, arXiv:1009.3919 (2010)
  39. 39.
    Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R., Stroppel, M.: Compact Projective Planes. de Gruyter Expositions in Mathematics, vol. 21. de Gruyter, Berlin (1995) CrossRefGoogle Scholar
  40. 40.
    Serrano, L., Stump, C.: Maximal fillings of moon polyominoes, simplicial complexes, and Schubert polynomials. Electron. J. Comb. 19 (2012) Google Scholar
  41. 41.
    Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, triangulations, and hyperbolic geometry. J. Am. Math. Soc. 1(3), 647–681 (1988) MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Streinu, I.: Pseudo-triangulations, rigidity and motion planning. Discrete Comput. Geom. 34(4), 587–635 (2005) MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Stump, C.: A new perspective on k-triangulations. J. Comb. Theory, Ser. A 118(6), 1794–1800 (2011) MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Welzl, E.: Entering and leaving j-facets. Discrete Comput. Geom. 25(3), 351–364 (2001) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.CNRS & LIX (UMR 7161)École PolytechniquePalaiseauFrance
  2. 2.Institut de Mathématiques de Jussieu (UMR 7586)Université Pierre et Marie CurieParisFrance

Personalised recommendations