Discrete & Computational Geometry

, Volume 48, Issue 2, pp 416–440 | Cite as

Some Properties of Gromov–Hausdorff Distances



The Gromov–Hausdorff distance between metric spaces appears to be a useful tool for modeling some object matching procedures. Since its conception it has been mainly used by pure mathematicians who are interested in the topology generated by this distance, and quantitative consequences of the definition are not very common. As a result, only few lower bounds for the distance are known, and the stability of many metric invariants is not understood. This paper aims at clarifying some of these points by proving several results dealing with explicit lower bounds for the Gromov–Hausdorff distance which involve different standard metric invariants. We also study a modified version of the Gromov–Hausdorff distance which is motivated by practical applications and both prove a structural theorem for it and study its topological equivalence to the usual notion. This structural theorem provides a decomposition of the modified Gromov–Hausdorff distance as the supremum over a family of pseudo-metrics, each of which involves the comparison of certain discrete analogues of curvature. This modified version relates the standard Gromov–Hausdorff distance to the work of Boutin and Kemper, and Olver.


Gromov–Hausdorff distance Metric geometry Curvature sets 


  1. 1.
    Ben Hamza, A., Krim, H.: Geodesic object representation and recognition. In: Lecture Notes in Computer Science, vol. 2886, pp. 378–387. Springer, Berlin (2003) Google Scholar
  2. 2.
    Berger, M.: Encounter with a geometer. II. Not. Am. Math. Soc. 47(3), 326–340 (2000) MATHGoogle Scholar
  3. 3.
    Bloom, G.S.: A counterexample to a theorem of S. Piccard. J. Comb. Theory, Ser. A 22(3), 378–379 (1977) MATHCrossRefGoogle Scholar
  4. 4.
    Boutin, M., Kemper, G.: On reconstructing n-point configurations from the distribution of distances or areas. Adv. Appl. Math. 32(4), 709–735 (2004) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Boutin, M., Kemper, G.: Lossless representation of graphs using distributions. arXiv e-prints, October 2007 Google Scholar
  6. 6.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Sci. Comput. 28(5), 1812–1836 (2006) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. AMS Graduate Studies in Math, vol. 33. Am. Math. Soc., Providence (2001) MATHGoogle Scholar
  8. 8.
    Burkard, R., Cela, E.: Linear assignment problems and extensions. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, supplement, vol. A, pp. 75–149. Kluwer Academic, Dordrecht (1999) Google Scholar
  9. 9.
    Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM, Philadelphia (2009) MATHCrossRefGoogle Scholar
  10. 10.
    Chazal, F., Cohen-Steiner, D., Guibas, L., Mémoli, F., Oudot, S.: Gromov-Hausdorff stable signatures for shapes using persistence. In: Proc. of SGP (2009) Google Scholar
  11. 11.
    Grigorescu, C., Petkov, N.: Distance sets for shape filters and shape recognition. IEEE Trans. Image Process. 12(10), 1274–1286 (2003) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gromov, M.: Groups of polynomial growth and expanding maps. Publ. Math. IHÉS 53, 53–73 (1981) MathSciNetMATHGoogle Scholar
  13. 13.
    Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, vol. 152. Birkhäuser, Boston (1999) MATHGoogle Scholar
  14. 14.
    Grove, K.: Metric and topological measurements of manifolds. In: Proceedings of the International Congress of Mathematicians, Vols. I, II, Kyoto, 1990, pp. 511–519. Math. Soc. Japan, Tokyo (1991) Google Scholar
  15. 15.
    Grove, K., Markvorsen, S.: Curvature, triameter, and beyond. Bull. Am. Math. Soc. 27(2), 261–265 (1992) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Grove, K., Markvorsen, S.: New extremal problems for the Riemannian recognition program via Alexandrov geometry. J. Am. Math. Soc. 8(1), 1–28 (1995) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 203–212. ACM, New York (2001) CrossRefGoogle Scholar
  18. 18.
    Kalton, N.J., Ostrovskii, M.I.: Distances between Banach spaces. Forum Math. 11(1), 17–48 (1999) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kokkendorff, S.L.: Characterizing the round sphere by mean distance. Differ. Geom. Appl. 26(6), 638–644 (2008) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Mémoli, F.: On the use of Gromov-Hausdorff distances for shape comparison. In: Proceedings of Point Based Graphics 2007, Prague, Czech Republic (2007) Google Scholar
  21. 21.
    Mémoli, F.: Gromov–Hausdorff distances in Euclidean spaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, June 2008, pp. 1–8 (2008) CrossRefGoogle Scholar
  22. 22.
    Mémoli, F.: A spectral notion of Gromov–Wasserstein distances and related methods. Appl. Comput. Math. 30, 363–401 (2011) MATHGoogle Scholar
  23. 23.
    Mémoli, F.: Gromov–Wasserstein distances and the metric approach to object matching. Found. Comput. Math. 11(4), 417–487 (2011) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Mémoli, F., Sapiro, G.: Comparing point clouds. In: SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 32–40. ACM, New York (2004) CrossRefGoogle Scholar
  25. 25.
    Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Olver, P.J.: Joint invariant signatures. Found. Comput. Math. 1(1), 3–68 (2001) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002) CrossRefGoogle Scholar
  28. 28.
    Pardalos, P.M., Wolkowicz, H. (eds.): Quadratic Assignment and Related Problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 16. Am. Math. Soc., Providence (1994). Papers from the workshop held at Rutgers University, New Brunswick, New Jersey, May 20–21, 1993 MATHGoogle Scholar
  29. 29.
    Petersen, P.: Riemannian Geometry. Springer, New York (1998) MATHGoogle Scholar
  30. 30.
    Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. Am. Math. Soc., Providence (1996) MATHGoogle Scholar
  31. 31.
    Ulam, S.M.: A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics, vol. 8. Interscience, New York/London (1960) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA
  2. 2.Department of Computer ScienceThe University of AdelaideAdelaideAustralia

Personalised recommendations