Advertisement

Discrete & Computational Geometry

, Volume 47, Issue 2, pp 430–453 | Cite as

Singular Tropical Hypersurfaces

  • Alicia Dickenstein
  • Luis F. Tabera
Article

Abstract

We study the notion of singular tropical hypersurfaces of any dimension. We characterize the singular points in terms of tropical Euler derivatives and we give an algorithm to compute all singular points. We also describe non-transversal intersection points of planar tropical curves.

Keywords

Tropical geometry Discriminant Singularity Euler derivative 

References

  1. 1.
    Ardila, F., Klivans, C.J.: The Bergman complex of a matroid and phylogenetic trees. J. Comb. Theory, Ser. B 96(1), 38–49 (2006) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bogart, T., Jensen, A.N., Speyer, D., Sturmfels, B., Thomas, R.R.: Computing tropical varieties. J. Symb. Comput. 42(1–2), 54–73 (2007) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Brugallé, E., López de Medrano, L.: Inflection points of real and tropical plane curves. arXiv:1102.2478 (2011)
  4. 4.
    Dickenstein, A., Feichtner, E.M., Sturmfels, B.: Tropical discriminants. J. Am. Math. Soc. 20(4), 1111–1133 (2007) (electronic) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Einsiedler, M., Kapranov, M., Lind, D.: Non-Archimedean amoebas and tropical varieties. J. Reine Angew. Math. 601, 139–157 (2006) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Esterov, A.: Newton polyhedra of discriminants of projections. Discrete Comput. Geom. 44(1), 96–148 (2010) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994) CrossRefGoogle Scholar
  8. 8.
    Izhakian, Z.: Tropical arithmetic and matrix algebra. Commun. Algebra 37(4), 1445–1468 (2009) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Izhakian, Z., Rowen, L.: Supertropical algebra. arXiv:0806.1175 (2008)
  10. 10.
    Markwig, H., Markwig, T., Shustin, E.: Tropical curves with a singularity in a fixed point. arXiv:0909.1827 (2009)
  11. 11.
    Mikhalkin, G.: Tropical geometry. Draft of the book in preparation Google Scholar
  12. 12.
    Mikhalkin, G.: Enumerative tropical algebraic geometry in ℝ2. J. Am. Math. Soc. 18(2), 313–377 (2005) (electronic) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Ochse, D.: The relation between the tropical A-discriminant and the secondary fan (2009) Google Scholar
  14. 14.
    Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Conference Series in Mathematics, vol. 97 (2002). Published for the Conference Board of the Mathematical Sciences, Washington, DC MATHGoogle Scholar
  15. 15.
    Tabera, L.F.: Tropical plane geometric constructions: a transfer technique in tropical geometry. Rev. Mat. Iberoam. 27(1), 181–232 (2011) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain

Personalised recommendations