Discrete & Computational Geometry

, Volume 47, Issue 2, pp 430–453 | Cite as

Singular Tropical Hypersurfaces

  • Alicia Dickenstein
  • Luis F. Tabera


We study the notion of singular tropical hypersurfaces of any dimension. We characterize the singular points in terms of tropical Euler derivatives and we give an algorithm to compute all singular points. We also describe non-transversal intersection points of planar tropical curves.


Tropical geometry Discriminant Singularity Euler derivative 


  1. 1.
    Ardila, F., Klivans, C.J.: The Bergman complex of a matroid and phylogenetic trees. J. Comb. Theory, Ser. B 96(1), 38–49 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bogart, T., Jensen, A.N., Speyer, D., Sturmfels, B., Thomas, R.R.: Computing tropical varieties. J. Symb. Comput. 42(1–2), 54–73 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brugallé, E., López de Medrano, L.: Inflection points of real and tropical plane curves. arXiv:1102.2478 (2011)
  4. 4.
    Dickenstein, A., Feichtner, E.M., Sturmfels, B.: Tropical discriminants. J. Am. Math. Soc. 20(4), 1111–1133 (2007) (electronic) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Einsiedler, M., Kapranov, M., Lind, D.: Non-Archimedean amoebas and tropical varieties. J. Reine Angew. Math. 601, 139–157 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Esterov, A.: Newton polyhedra of discriminants of projections. Discrete Comput. Geom. 44(1), 96–148 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994) CrossRefGoogle Scholar
  8. 8.
    Izhakian, Z.: Tropical arithmetic and matrix algebra. Commun. Algebra 37(4), 1445–1468 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Izhakian, Z., Rowen, L.: Supertropical algebra. arXiv:0806.1175 (2008)
  10. 10.
    Markwig, H., Markwig, T., Shustin, E.: Tropical curves with a singularity in a fixed point. arXiv:0909.1827 (2009)
  11. 11.
    Mikhalkin, G.: Tropical geometry. Draft of the book in preparation Google Scholar
  12. 12.
    Mikhalkin, G.: Enumerative tropical algebraic geometry in ℝ2. J. Am. Math. Soc. 18(2), 313–377 (2005) (electronic) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Ochse, D.: The relation between the tropical A-discriminant and the secondary fan (2009) Google Scholar
  14. 14.
    Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Conference Series in Mathematics, vol. 97 (2002). Published for the Conference Board of the Mathematical Sciences, Washington, DC zbMATHGoogle Scholar
  15. 15.
    Tabera, L.F.: Tropical plane geometric constructions: a transfer technique in tropical geometry. Rev. Mat. Iberoam. 27(1), 181–232 (2011) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain

Personalised recommendations