Discrete & Computational Geometry

, Volume 47, Issue 2, pp 347–377 | Cite as

Optimal Topological Simplification of Discrete Functions on Surfaces

Open Access
Article

Abstract

Given a function f on a surface and a tolerance δ>0, we construct a function fδ subject to ‖fδfδ such that fδ has a minimum number of critical points. Our construction relies on a connection between discrete Morse theory and persistent homology and completely removes homological noise with persistence ≤2δ from the input function f. The number of critical points of the resulting simplified function fδ achieves the lower bound dictated by the stability theorem of persistent homology. We show that the simplified function can be computed in linear time after persistence pairs have been computed.

Keywords

Discrete Morse theory Persistent homology Topological denoising 

References

  1. 1.
    Agarwal, P.K., Arge, L., Yi, K.: I/O-efficient batched union-find and its applications to terrain analysis. In: SCG ’06: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 167–176. ACM, New York (2006) CrossRefGoogle Scholar
  2. 2.
    Attali, D., Glisse, M., Hornus, S., Lazarus, F., Morozov, D.: Persistence-sensitive simplification of functions on surfaces in linear time. Preprint (2008) Google Scholar
  3. 3.
    Banchoff, T.: Critical points and curvature for embedded polyhedra. J. Differ. Geom. 1(3–4), 245–256 (1967) MATHMathSciNetGoogle Scholar
  4. 4.
    Bauer, U.: Persistence in discrete Morse theory. PhD thesis, University of Göttingen (2011) Google Scholar
  5. 5.
    Chari, M.K.: On discrete Morse functions and combinatorial decompositions. Discrete Math. 217(1–3), 101–113 (2000) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2008) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009) MATHGoogle Scholar
  9. 9.
    Danner, A., Mølhave, T., Yi, K., Agarwal, P.K., Arge, L., Mitasova, H.: Terra-Stream: from elevation data to watershed hierarchies. In: GIS ’07: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, pp. 1–8. ACM, New York (2007) CrossRefGoogle Scholar
  10. 10.
    de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)homology. Unpublished manuscript (2010) Google Scholar
  11. 11.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002) MATHMathSciNetGoogle Scholar
  12. 12.
    Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse–Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30(1), 87–107 (2003) MATHMathSciNetGoogle Scholar
  13. 13.
    Edelsbrunner, H., Morozov, D., Pascucci, V.: Persistence-sensitive simplification functions on 2-manifolds. In: SCG ’06: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 127–134. ACM, New York (2006) CrossRefGoogle Scholar
  14. 14.
    Eells, J., Kuiper, N.: Manifolds which are like projective planes. Publ. Math. Inst. Hautes Études Sci. 14(1), 5–46 (1962) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Forman, R.: A user’s guide to discrete Morse theory. Sémin. Lothar. Comb. B48c, 1–35 (2002) MathSciNetGoogle Scholar
  17. 17.
    Gray, C., Kammer, F., Löffler, M., Silveira, R.I.: Removing local extrema from imprecise terrains. Preprint (2010). arXiv:1002.2580
  18. 18.
    Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of Morse–Smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13(6), 1440–1447 (2007) CrossRefGoogle Scholar
  19. 19.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) MATHGoogle Scholar
  20. 20.
    Jenson, S.K., Domingue, J.O.: Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens. 54(11), 1593–1600 (1988) Google Scholar
  21. 21.
    Joswig, M., Pfetsch, M.E.: Computing optimal Morse matchings. SIAM J. Discrete Math. 20(1), 11–25 (2006) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology, 1st edn. Applied Mathematical Sciences, vol. 157. Springer, Berlin (2004) MATHGoogle Scholar
  23. 23.
    King, H., Knudson, K., Mramor, N.: Generating discrete Morse functions from point data. Exp. Math. 14(4), 435–444 (2005) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Kosinski, A.: Singularities of piecewise linear mappings. I Mappings into the real line. Bull. Am. Math. Soc. 68(2), 110–114 (1962) CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Kühnel, W.: Triangulations of manifolds with few vertices. In: Tricerri, F. (ed.) Advances in Differential Geometry and Topology, pp. 59–114. World Scientific, Singapore (1990) Google Scholar
  27. 27.
    Large Geometric Models Archive. Georgia Institute of Technology. Available from: http://www.cc.gatech.edu/projects/large_models/
  28. 28.
    Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26(3), 221–233 (2003) CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Lundell, A.T., Weingram, S.: The Topology of CW Complexes. Van Nostrand-Reinhold, New York (1969) MATHGoogle Scholar
  30. 30.
    Milnor, J.: Morse Theory. Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton (1963) MATHGoogle Scholar
  31. 31.
    Morozov, D.: Homological illusions of persistence and stability. PhD thesis, Duke University (2008) Google Scholar
  32. 32.
    Morse, M.: The elimination of critical points of a non-degenerate function on a differentiable manifold. J. Anal. Math. 13(1), 257–316 (1964) CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Soille, P.: Morphological carving. Pattern Recognit. Lett. 25(5), 543–550 (2004) CrossRefGoogle Scholar
  34. 34.
    Soille, P.: Optimal removal of spurious pits in grid digital elevation models. Water Resour. Res. 40(12), W12509+ (2004) CrossRefGoogle Scholar
  35. 35.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006) CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Institute for Numerical and Applied MathematicsUniversity of GöttingenGöttingenGermany
  2. 2.Department of Mathematics and Computer ScienceFreie Universität BerlinBerlinGermany

Personalised recommendations