Discrete & Computational Geometry

, Volume 45, Issue 4, pp 796–823 | Cite as

Computing Hereditary Convex Structures

  • Bernard Chazelle
  • Wolfgang MulzerEmail author


Color red and blue the n vertices of a convex polytope \(\mathcal{P}\) in ℝ3. Can we compute the convex hull of each color class in o(nlog n) time? What if we have more than two colors? What if the colors are random? Consider an arbitrary query halfspace and call the vertices of \(\mathcal{P}\) inside it blue: can the convex hull of the blue points be computed in time linear in their number? More generally, can we quickly compute the blue hull without looking at the whole polytope? This paper considers several instances of hereditary computation and provides new results for them. In particular, we resolve an eight-year old open problem by showing how to split a convex polytope in linear expected time.


Convex polytope Halfspace range searching Hereditary convex hulls 


  1. 1.
    Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4(6), 591–604 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Amato, N.M., Goodrich, M.T., Ramos, E.A.: Linear-time triangulation of a simple polygon made easier via randomization. In: Proc. 16th Annu. ACM Sympos. Comput. Geom. (SoCG), pp. 201–212 (2000) Google Scholar
  3. 3.
    Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput. Geom. Appl. 4(4), 475–481 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008) zbMATHGoogle Scholar
  5. 5.
    Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, New York (1998) zbMATHGoogle Scholar
  6. 6.
    Buchin, K., Mulzer, W.: Delaunay triangulations in O(sort(n)) time and more. In: Proc. 50th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pp. 139–148 (2009) CrossRefGoogle Scholar
  7. 7.
    Chan, T.M.: Random sampling, halfspace range reporting, and construction of (≤k)-levels in three dimensions. SIAM J. Comput. 30(2), 561–575 (2000) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chan, T.M.: Three problems about simple polygons. Comput. Geom. Theory Appl. 35(3), 209–217 (2006) zbMATHGoogle Scholar
  9. 9.
    Chazelle, B.: Filtering search: a new approach to query-answering. SIAM J. Comput. 15(3), 703–724 (1986) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(5), 485–524 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Chazelle, B.: An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J. Comput. 21(4), 671–696 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, New York (2000) zbMATHGoogle Scholar
  13. 13.
    Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a Delaunay triangulation in linear time. Algorithmica 34(1), 39–46 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Chew, L.P.: Building Voronoi diagrams for convex polygons in linear expected time. Tech. Rep. PCS-TR90-147, Dartmouth College, Computer Science, Hanover, NH (1990) Google Scholar
  15. 15.
    Chew, L.P., Fortune, S.: Sorting helps for Voronoi diagrams. Algorithmica 18(2), 217–228 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. Discrete Comput. Geom. 21(3), 405–420 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Chin, F., Wang, C.A.: Finding the constrained Delaunay triangulation and constrained Voronoi diagram of a simple polygon in linear time. SIAM J. Comput. 28(2), 471–486 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Clarkson, K.L.: A randomized algorithm for closest-point queries. SIAM J. Comput. 17(4), 830–847 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry. II. Discrete Comput. Geom. 4(5), 387–421 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009) zbMATHGoogle Scholar
  21. 21.
    Devillers, O.: Randomization yields simple O(nlog  n) algorithms for difficult Ω(n) problems. Int. J. Comput. Geom. Appl. 2(1), 97–111 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Djidjev, H.N., Lingas, A.: On computing Voronoi diagrams for sorted point sets. Int. J. Comput. Geom. Appl. 5(3), 327–337 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Dobkin, D.P., Kirkpatrick, D.G.: Fast detection of polyhedral intersection. Theor. Comput. Sci. 27(3), 241–253 (1983) CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Dobkin, D.P., Kirkpatrick, D.G.: A linear algorithm for determining the separation of convex polyhedra. J. Algorithms 6(3), 381–392 (1985) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Fournier, H., Vigneron, A.: A tight lower bound for computing the diameter of a 3D convex polytope. Algorithmica 49(3), 245–257 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Kirkpatrick, D.G., Klawe, M.M., Tarjan, R.E.: Polygon triangulation in O(nlog  log  n) time with simple data structures. Discrete Comput. Geom. 7(4), 329–346 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Klein, R., Lingas, A.: A linear-time randomized algorithm for the bounded Voronoi diagram of a simple polygon. Int. J. Comput. Geom. Appl. 6(3), 263–278 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    van Kreveld, M.J., Löffler, M., Mitchell, J.S.B.: Preprocessing imprecise points and splitting triangulations. In: Proc. 19th Annu. Internat. Sympos. Algorithms Comput. (ISAAC), pp. 544–555 (2008) Google Scholar
  29. 29.
    Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002) zbMATHGoogle Scholar
  30. 30.
    Mulmuley, K.: Computational Geometry: An Introduction Through Randomized Algorithms. Englewood Cliffs, Prentice-Hall (1994) Google Scholar
  31. 31.
    Ramos, E.A.: On range reporting, ray shooting and k-level construction. In: Proc. 15th Annu. ACM Sympos. Comput. Geom. (SoCG), pp. 390–399 (1999) Google Scholar
  32. 32.
    Seidel, R.: A method for proving lower bounds for certain geometric problems. Tech. Rep. TR84-592, Cornell University, Ithaca, NY, USA (1984) Google Scholar
  33. 33.
    Seidel, R.: A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl. 1(1), 51–64 (1991) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA
  2. 2.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations