Discrete & Computational Geometry

, Volume 46, Issue 4, pp 704–723 | Cite as

A QPTAS for TSP with Fat Weakly Disjoint Neighborhoods in Doubling Metrics

  • T.-H. Hubert Chan
  • Khaled Elbassioni
Open Access


We consider the Traveling Salesman Problem with Neighborhoods (TSPN) in doubling metrics. The goal is to find a shortest tour that visits each of a collection of n subsets (regions or neighborhoods) in the underlying metric space. We give a quasi-polynomial time approximation scheme (QPTAS) when the regions are what we call α-fat weakly disjoint. This notion combines the existing notions of diameter variation, fatness and disjointness for geometric objects and generalizes these notions to any arbitrary metric space. Intuitively, the regions can be grouped into a bounded number of types, where in each type, the regions have similar upper bounds for their diameters, and each such region can designate a point such that these points are far away from one another.

Our result generalizes the polynomial time approximation scheme (PTAS) for TSPN on the Euclidean plane by Mitchell (in SODA, pp. 11–18, 2007) and the QPTAS for TSP on doubling metrics by Talwar (in 36th STOC, pp. 281–290, 2004). We also observe that our techniques directly extend to a QPTAS for the Group Steiner Tree Problem on doubling metrics, with the same assumption on the groups.


Traveling salesman problem with neighborhoods Quasi-polynomial time approximation scheme Doubling metrics 


  1. 1.
    Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discrete Appl. Math. 55(3), 197–218 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Appl. Math. 23(1), 11–24 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Arora, S.: Approximation algorithms for geometric TSP. In: The Traveling Salesman Problem and Its Variations. Comb. Optim., vol. 12, pp. 207–221. Kluwer Acad., Dordrecht (2002) CrossRefGoogle Scholar
  4. 4.
    Assouad, P.: Plongements Lipschitziens dans R n. Bull. Soc. Math. Fr. 111(4), 429–448 (1983) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In: 37th FOCS, pp. 184–193 (1996) Google Scholar
  6. 6.
    Clementi, A.E.F., Crescenzi, P., Rossi, G.: On the complexity of approximating colored-graph problems. In: Proc. 5th Internat. Computing and Combinatorics Conference. Lecture Notes in Computer Science, vol. 1627, pp. 281–290. Springer, Berlin (1999) Google Scholar
  7. 7.
    Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in doubling metrics. In: 16th SODA, pp. 762–771 (2005) Google Scholar
  8. 8.
    Clarkson, K.L.: Nearest neighbor queries in metric spaces. Discrete Comput. Geom. 22(1), 63–93 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    de Berg, M., Gudmundsson, J., Katz, M.J., Levcopoulos, C., Overmars, M.H., van der Stappen, A.F.: TSP with neighborhoods of varying size. J. Algorithms 57, 22–36 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics. Algorithms and Combinatorics, vol. 15. Springer, Berlin (1997) zbMATHGoogle Scholar
  11. 11.
    Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neighborhoods in the plane. J. Algorithms 48(1), 135–159 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dror, M., Orlin, J.B.: Combinatorial optimization with explicit delineation of the ground set by a collection of subsets. SIAM J. Discrete Math. 21(4), 1019–1034 (2008) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Elbassioni, K., Fishkin, A.V., Mustafa, N., Sitters, R.: Approximation algorithms for Euclidean group TSP. In: ICALP. Lecture Notes in Computer Science, vol. 3580, pp. 1115–1126. Springer, Berlin (2005) Google Scholar
  14. 14.
    Elbassioni, K., Fishkin, A.V., Sitters, R.: Approximation algorithms for the Euclidean traveling salesman problem with discrete and continuous neighborhoods. Int. J. Comput. Geom. Appl. 19(2), 173–193 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Feremans, C., Grigoriev, A.: Approximation schemes for the generalized geometric problems with geographic clustering. In: Proceedings of the 21st European Workshop on Computational Geometry EWCG, pp. 101–102 (2005) Google Scholar
  17. 17.
    Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group Steiner tree problem. J. Algorithms 37(1), 66–84 (2000). Preliminary version in 9th SODA, pp. 253–259 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gudmundsson, J., Levcopoulos, C.: A fast approximation algorithm for TSP with neighborhoods. Nord. J. Comput. 6(4), 469–488 (1999) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings. In: 44th FOCS, pp. 534–543 (2003) Google Scholar
  20. 20.
    Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings of the 36th ACM Symposium on Theory of Computing, pp. 585–594. ACM Press, New York (2003) Google Scholar
  21. 21.
    Har-Peled, S., Mendel, M.: Fast constructions of nets in low dimensional metrics, and their applications. In: 21st SOCG, pp. 150–158 (2005) Google Scholar
  22. 22.
    Krauthgamer, R., Lee, J.R.: Navigating nets: Simple algorithms for proximity search. In: 15th SODA, pp. 798–807 (2004) Google Scholar
  23. 23.
    Krauthgamer, R., Lee, J.R.: The black-box complexity of nearest-neighbor search. Theor. Comput. Sci. 348(2–3), 262–276 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Mata, C.S., Mitchell, J.S.B.: Approximation algorithms for geometric tour and network design problems (extended abstract). In: Proc. 11th Annual ACM Symposium on Computational Geometry, pp. 360–369 (1995) CrossRefGoogle Scholar
  25. 25.
    Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002) zbMATHGoogle Scholar
  26. 26.
    Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Mitchell, J.S.B.: A PTAS for TSP with neighborhoods among fat regions in the plane. In: SODA, pp. 11–18 (2007) Google Scholar
  28. 28.
    Mitchell, J.S.B.: A constant-factor approximation algorithm for TSP with pairwise-disjoint connected neighborhoods in the plane. In: Symposium on Computational Geometry, pp. 183–191 (2010) Google Scholar
  29. 29.
    Rao, S.B., Smith, W.D.: Approximating geometrical graphs via “spanners” and “banyans”. In: STOC ’98, Dallas, TX, pp. 540–550. ACM, New York (1999) Google Scholar
  30. 30.
    Safra, S., Schwartz, O.: On the complexity of approximating TSP with neighborhoods and related problems. Comput. Complex. 14(4), 281–307 (2006) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Talwar, K.: Bypassing the embedding: Algorithms for low-dimensional metrics. In: 36th STOC, pp. 281–290 (2004) Google Scholar
  32. 32.
    van der Stappen, A.F.: Motion planning amidst fat obstacles. Ph.D. Dissertation, Department of Computer Science, Utrecht University, Utrecht, Netherlands (1994) Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Hong KongHong KongHong Kong
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations