Discrete & Computational Geometry

, Volume 46, Issue 2, pp 389–393 | Cite as

On Lebesgue Measure of Integral Self-Affine Sets

  • Ievgen V. BondarenkoEmail author
  • Rostyslav V. Kravchenko


Let A be an expanding integer n×n matrix and D be a finite subset of ℤ n . The self-affine set T=T(A,D) is the unique compact set satisfying the equality \(A(T)=\bigcup_{d\in D}(T+d)\). We present an effective algorithm to compute the Lebesgue measure of the self-affine set T, the measure of the intersection T∩(T+u) for u∈ℤ n , and the measure of the intersection of self-affine sets T(A,D 1)∩T(A,D 2) for different sets D 1, D 2⊂ℤ n .


Self-affine set Tile Graph-directed system Self-similar action 


  1. 1.
    Bondarenko, I., Kravchenko, R.: Graph-directed systems and self-similar measures on limit spaces of self-similar groups. Adv. Math. (2010). doi: 10.1016/j.aim.2010.09.018. Available at arXiv:1001.2291 [abs]
  2. 2.
    Deng, G.-T., He, X.-G.: Integral self-affine sets with positive Lebesgue measures. Arch. Math. 90(2), 150–157 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gabardo, J.-P., Yu, X.: Natural tiling, lattice tiling and Lebesgue measure of integral self-affine tiles. J. Lond. Math. Soc. II 74(1), 184–204 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    He, X.-G., Lau, K.-S., Rao, H.: Self-affine sets and graph-directed systems. Constr. Approx. 19(3), 373–397 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979) zbMATHGoogle Scholar
  6. 6.
    Kirat, I.: On the Lebesgue measure of self-affine sets. Turk. J. Math. 25(4), 535–543 (2001) zbMATHMathSciNetGoogle Scholar
  7. 7.
    Lagarias, J.C., Wang, Y.: Integral self-affine tiles in ℝn. I: Standard and nonstandard digit sets. J. Lond. Math. Soc. II 54(1), 161–179 (1996) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Lagarias, J.C., Wang, Y.: Self-affine tiles in ℝn. Adv. Math. 121(1), 21–49 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Nekrashevych, V.: Self-Similar Groups. Mathematical Surveys and Monographs, vol. 117. American Mathematical Society, Providence (2005) zbMATHGoogle Scholar
  10. 10.
    Scheicher, K., Thuswaldner, J.M.: Canonical number systems, counting automata and fractals. Math. Proc. Camb. Philos. Soc. 133(1), 163–182 (2002) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ievgen V. Bondarenko
    • 1
    Email author
  • Rostyslav V. Kravchenko
    • 2
  1. 1.National Taras Shevchenko University of KievKievUkraine
  2. 2.Texas A&M UniversityCollege StationUSA

Personalised recommendations