Discrete & Computational Geometry

, Volume 46, Issue 4, pp 799–818 | Cite as

Upper Bound on the Packing Density of Regular Tetrahedra and Octahedra

Article

Abstract

Aristotle contended that (regular) tetrahedra tile space, an opinion that remained widespread until it was observed that non-overlapping tetrahedra cannot subtend a solid angle of 4π around a point if this point lies on a tetrahedron edge. From this 15th century argument, we can deduce that tetrahedra do not tile space but, more than 500 years later, we are unaware of any known non-trivial upper bound to the packing density of tetrahedra. In this article, we calculate such a bound. To this end, we show the existence, in any packing of regular tetrahedra, of a set of disjoint spheres centered on tetrahedron edges, so that each sphere is not fully covered by the packing. The bound on the amount of space that is not covered in each sphere is obtained in a recursive way by building on the solid angle argument. The argument can be readily modified to apply to other polyhedra. The resulting lower bound on the fraction of empty space in a packing of regular tetrahedra is 2.6…×10−25 and reaches 1.4…×10−12 for regular octahedra.

Keywords

Tetrahedron Octahedron Packing Upper bound Regular solid Hilbert problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aristotle: On the Heavens, vol. III. ebooks@adelaide.edu. Translated by J.L. Stocks Google Scholar
  2. 2.
    Bezdek, A., Kuperberg, W.: Dense packing of space with various convex solids. Preprint arXiv:1008.2398v1 (2010)
  3. 3.
    Chen, E.R.: A dense packing of regular tetrahedra. Discrete Comput. Geom. 40, 214 (2008) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Chen, E.R., Engel, M., Glotzer, S.: Dense crystalline dimer packings of regular tetrahedra. Discrete Comput. Geom. 44, 253 (2010) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Conway, J.H., Torquato, S.: Packing, tiling, and covering with tetrahedra. Proc. Natl. Acad. Sci. USA 103(28), 10612 (2006) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Euclid, Heath, T.L., Heiberg, J.L.: The Thirteen Books of Euclid’s Elements: Books X–XIII and Appendix. Cambridge University Press, Cambridge (1908) Google Scholar
  7. 7.
    Haji-Akbari, A., Engel, M., Keys, A., Zheng, X.: Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773 (2009) CrossRefGoogle Scholar
  8. 8.
    Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. Second Ser. 162, 1065 (2005) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the Kepler conjecture. Discrete Comput. Geom. 44, 1 (2010) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hilbert, D.C.: Mathematische probleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl. 3, 253 (1900) Google Scholar
  11. 11.
    Hoylman, D.J.: The densest lattice packing of tetrahedra. Bull. Am. Math. Soc. 76, 135 (1970) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Jaoshvili, A., Esakia, A., Porrati, M., Chaikin, P.M.: Experiments on the random packing of tetrahedral dice. Phys. Rev. Lett. 104, 185501 (2010) CrossRefGoogle Scholar
  13. 13.
    Kallus, Y., Elser, V., Gravel, S.: A method for dense packing discovery. Preprint arXiv:1003.3301 (2010)
  14. 14.
    Kallus, Y., Elser, V., Gravel, S.: Dense periodic packings of tetrahedra with small repeating units. Discrete Comput. Geom. 44, 245 (2010) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Senechal, M.: Which tetrahedra fill space? Math. Mag. 54(5), 227 (1981) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Torquato, S., Jiao, Y.: Dense packings of polyhedra: Platonic and archimedean solids. Phys. Rev. E 80, 041104 (2009) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Torquato, S., Jiao, Y.: Dense packings of the platonic and archimedean solids. Nature 460, 876 (2009) CrossRefGoogle Scholar
  18. 18.
    Torquato, S., Jiao, Y.: Exact constructions of a family of dense periodic packings of tetrahedra. Phys. Rev. E 81, 041310 (2010) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of GeneticsStanford University School of MedicineStanfordUSA
  2. 2.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaUSA

Personalised recommendations