Discrete & Computational Geometry

, Volume 45, Issue 1, pp 65–87

Small Grid Embeddings of 3-Polytopes

Article

DOI: 10.1007/s00454-010-9301-0

Cite this article as:
Ribó Mor, A., Rote, G. & Schulz, A. Discrete Comput Geom (2011) 45: 65. doi:10.1007/s00454-010-9301-0

Abstract

We introduce an algorithm that embeds a given 3-connected planar graph as a convex 3-polytope with integer coordinates. The size of the coordinates is bounded by O(27.55n)=O(188n). If the graph contains a triangle we can bound the integer coordinates by O(24.82n). If the graph contains a quadrilateral we can bound the integer coordinates by O(25.46n). The crucial part of the algorithm is to find a convex plane embedding whose edges can be weighted such that the sum of the weighted edges, seen as vectors, cancel at every point. It is well known that this can be guaranteed for the interior vertices by applying a technique of Tutte. We show how to extend Tutte’s ideas to construct a plane embedding where the weighted vector sums cancel also on the vertices of the boundary face.

Keywords

3-polytopes Grid embeddings Steinitz’ theorem Equilibrium stresses 

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Gesellschaft zur Förderung angewandter Informatik e.V.BerlinGermany
  2. 2.Institut für InformatikFreie Universität BerlinBerlinGermany
  3. 3.Institut für Mathematische Logik und GrundlagenforschungUniversität MünsterMünsterGermany

Personalised recommendations