Discrete & Computational Geometry

, Volume 44, Issue 4, pp 812–837 | Cite as

Slider-Pinning Rigidity: a Maxwell–Laman-Type Theorem

Article

Abstract

We define and study slider-pinning rigidity, giving a complete combinatorial characterization. This is done via direction-slider networks, which are a generalization of Whiteley’s direction networks.

Keywords

Rigidity theory Matroids Sparse graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brylawski, T.: Constructions. In: White, N. (ed.) Theory of Matroids, Encyclopedia of Mathematics and Its Applications, pp. 127–223. Cambridge University Press, Cambridge (1986) Google Scholar
  2. 2.
    Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (1997) Google Scholar
  3. 3.
    Fekete, Z.: Source location with rigidity and tree packing requirements. Oper. Res. Lett. 34(6), 607–612 (2006) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gluck, H.: Almost all simply connected closed surfaces are rigid. Lect. Notes Math. 438, 225–239 (1975) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Haas, R., Lee, A., Streinu, I., Theran, L.: Characterizing sparse graphs by map decompositions. J. Comb. Math. Comb. Comput. 62, 3–11 (2007) MATHMathSciNetGoogle Scholar
  6. 6.
    Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Math. 308(8), 1425–1437 (2008). doi:10.1016/j.disc.2007.07.104 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lee, A., Streinu, I., Theran, L.: Graded sparse graphs and matroids. Journal of Universal Computer Science 13(10) (2007) Google Scholar
  9. 9.
    Lee, A., Streinu, I., Theran, L.: The slider-pinning problem. In: Proceedings of the 19th Canadian Conference on Computational Geometry (CCCG’07) (2007) Google Scholar
  10. 10.
    Lovász, L.: Combinatorial Problems and Exercises, 2nd edn. AMS Chelsea, Providence (2007) MATHGoogle Scholar
  11. 11.
    Lovász, L., Yemini, Y.: On generic rigidity in the plane. SIAM J. Algebr. Discrete Methods 3(1), 91–98 (1982) MATHCrossRefGoogle Scholar
  12. 12.
    Lovász, L.: Matroid matching and some applications. J. Comb. Theory, Ser. B 28, 208–236 (1980) MATHCrossRefGoogle Scholar
  13. 13.
    Maxwell, J.C.: On the calculation of the equilibrium and stiffness of frames. Philos. Mag. 27, 294 (1864) Google Scholar
  14. 14.
    Oxley, J.G.: Matroid Theory. Clarendon/Oxford University Press, New York (1992) MATHGoogle Scholar
  15. 15.
    Recski, A.: Matroid Theory and Its Applications in Electric Network Theory and in Statics. Springer, Berlin (1989) Google Scholar
  16. 16.
    Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly np-hard. In: Proc. of 17th Allerton Conference in Communications, Control, and Computing, Monticello, IL, pp. 480–489 (1979) Google Scholar
  17. 17.
    Streinu, I., Theran, L.: Sparsity-certifying graph decompositions. Graphs Comb. 25(2), 219–238 (2009). doi:10.1007/s00373-008-0834-4 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tay, T.S.: A new proof of Laman’s theorem. Graphs Comb. 9, 365–370 (1993) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Whiteley, W.: The union of matroids and the rigidity of frameworks. SIAM J. Discrete Math. 1(2), 237–255 (1988) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Whiteley, W.: A matroid on hypergraphs, with applications in scene analysis and geometry. Discrete Comput. Geom. 4, 75–95 (1989) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Whiteley, W.: Some matroids from discrete applied geometry. In: Bonin, J., Oxley, J.G., Servatius, B. (eds.) Matroid Theory. Contemporary Mathematics, vol. 197, pp. 171–311. American Mathematical Society, Providence (1996) Google Scholar
  22. 22.
    Whiteley, W.: Rigidity and scene analysis. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 1327–1354. CRC Press, Boca Raton (2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Computer Science DepartmentSmith CollegeNorthamptonUSA
  2. 2.Mathematics DepartmentTemple UniversityPhiladelphiaUSA

Personalised recommendations