Discrete & Computational Geometry

, Volume 44, Issue 2, pp 253–280 | Cite as

Dense Crystalline Dimer Packings of Regular Tetrahedra

  • Elizabeth R. Chen
  • Michael Engel
  • Sharon C. Glotzer


We present the densest known packing of regular tetrahedra with density \(\phi =\frac{4000}{4671}=0.856347\ldots\,\). Like the recently discovered packings of Kallus et al. and Torquato–Jiao, our packing is crystalline with a unit cell of four tetrahedra forming two triangular dipyramids (dimer clusters). We show that our packing has maximal density within a three-parameter family of dimer packings. Numerical compressions starting from random configurations suggest that the packing may be optimal at least for small cells with up to 16 tetrahedra and periodic boundaries.


Crystallography Packing Regular solid Hilbert problem 


  1. 1.
    Tang, Z.Y., Zhang, Z.L., Wang, Y., Glotzer, S.C., Kotov, N.A.: Spontaneous self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006) CrossRefGoogle Scholar
  2. 2.
    Zhang, Z.-L., Tang, Z.-Y., Kotov, N.A., Glotzer, S.C.: Self-assembly of CdTe nanoparticles into wires and sheets. Nano Letters 7, 1670–1675 (2007) CrossRefGoogle Scholar
  3. 3.
    Srivastava, S., Santos, A., Critchley, K., Kim, K.-S., Podsiadlo, P., Sun, K., Lee, J., Lilly, G.D., Glotzer, S.C., Kotov, N.A.: Light-controlled self-assembly of semi-conductor nanoparticles into twisted ribbons. Science 327, 1355–1359 (2010) CrossRefGoogle Scholar
  4. 4.
    Chen, E.R.: A picturebook of tetrahedral packings. Ph.D. Dissertation, University of Michigan (2010) Google Scholar
  5. 5.
    Struik, D.J.: De impletione loci. Nieuw Arch. Wiskd. 15, 121–134 (1925) Google Scholar
  6. 6.
    Senechal, M.: Which tetrahedra fill space? Math. Mag. 54, 227–243 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig (1896) Google Scholar
  8. 8.
    Minkowski, H.: Dichteste gitterförmige Lagerung kongruenter Körper. Nachr. Ges. Wiss. Gött. 311–355 (1904) Google Scholar
  9. 9.
    Hilbert, D.C.: Mathematische Probleme. Nachr. Ges. Wiss. Gött., Math.-Phys. Kl. 3, 253–297 (1900) Google Scholar
  10. 10.
    Grömer, H.: Über die dichteste gitterförmige Lagerung kongruenter Tetraeder. Monatshefte Math. 66, 12–15 (1962) zbMATHCrossRefGoogle Scholar
  11. 11.
    Hoylman, D.J.: The densest lattice packing of tetrahedra. Bull. Am. Math. Soc. 76, 135–137 (1970) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gardner, M.: The Colossal Book of Mathematics: Classic Puzzles, Paradoxes, and Problems. Norton, New York (2001), 135 pp. zbMATHGoogle Scholar
  13. 13.
    Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Betke, U., Henk, M.: Densest lattice packings of 3-polytopes. Comput. Geom. 16, 157–186 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Conway, J.H., Torquato, S.: Packing, tiling and covering with tetrahedra. Proc. Natl. Acad. Sci. USA 103, 10612–10617 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Chaikin, P., Wang, S., Jaoshvili, A.: Packing of tetrahedral and other dice. In: American Physical Society March Meeting, Denver, CO, paper S29.00010, 2007 Google Scholar
  17. 17.
    Jaoshvili, A., Esakia, A., Porrati, M., Chaikin, P.M.: Experiments on the random packing of tetrahedral dice. Phys. Rev. Lett. 104, 185501 (2010). doi: 10.1103/PhysRevLett.104.185501 CrossRefGoogle Scholar
  18. 18.
    Chen, E.R.: A dense packing of regular tetrahedra. Discrete Comput. Geom. 40, 214–240 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Haji-Akbari, A., Engel, M., Keys, A.S., Zheng, X.Y., Petschek, R., Palffy-Muhoray, P., Glotzer, S.C.: Dense packings of hard tetrahedra. In: American Physical Society March Meeting, Pittsburgh, PA, paper X9.00009, 2009 Google Scholar
  20. 20.
    Torquato, S., Jiao, Y.: Dense packings of the Platonic and Archimedean solids. Nature 460, 876–879 (2009) CrossRefGoogle Scholar
  21. 21.
    Haji-Akbari, A., Engel, M., Keys, A.S., Zheng, X.Y., Petschek, R.G., Palffy-Muhoray, P., Glotzer, S.C.: Disordered, quasicrystalline, and crystalline phases of densely packed tetrahedra. Nature 462, 773–777 (2009) CrossRefGoogle Scholar
  22. 22.
    Kallus, Y., Elser, V., Gravel, S.: Dense periodic packings of tetrahedra with a small repeating units. Discrete Comput. Geom. (2010). doi: 10.1007/s00454-010-9254-3. arXiv:0910.5226 (2009) Google Scholar
  23. 23.
    Torquato, S., Jiao, Y.: Analytical constructions of a family of dense tetrahedron packings and the role of symmetry. arXiv:0912.4210v3 (2009)
  24. 24.
    Hahn, T. (ed.): International Tables for Crystallography, Volume A: Space Group Symmetry, 5th edn. Springer, Berlin (2002) Google Scholar
  25. 25.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, New York (2001) Google Scholar
  26. 26.
  27. 27.
    Chen, E.R., Engel, M., Glotzer, S.C.: Dense crystalline dimer packings of regular tetrahedra. Supplementary info in arXiv:1001.0586 (2010)

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Elizabeth R. Chen
    • 1
  • Michael Engel
    • 2
  • Sharon C. Glotzer
    • 2
    • 3
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations