Discrete & Computational Geometry

, Volume 44, Issue 3, pp 608–621 | Cite as

A Measure of Non-convexity in the Plane and the Minkowski Sum

  • R. N. KarasevEmail author


In this paper a measure of non-convexity for a simple polygonal region in the plane is introduced. It is proved that for “not far from convex” regions this measure does not decrease under the Minkowski sum operation, and guarantees that the Minkowski sum has no “holes”.


Minkowski sum Weak convexity 


  1. 1.
    Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums. In: Lecture Notes in Computer Science, vol. 1897, pp. 20–31. Springer, Berlin (2000) Google Scholar
  2. 2.
    Bennell, J.A., Dowsland, K.A., Dowsland, W.B.: The irregular cutting-stock problem—a new procedure for deriving the no-fit polygon. Comput. Oper. Res. 28(3), 271–287 (2001) CrossRefGoogle Scholar
  3. 3.
    Burkea, E.K., Helliera, R.S.R., Kendalla, G., Whitwell, G.: Complete and robust no-fit polygon generation for the irregular stock cutting problem. Eur. J. Oper. Res. 179(1), 27–49 (2007) CrossRefGoogle Scholar
  4. 4.
    Ivanov, G.E.: Weak convexity in the senses of Vial and Efimov-Stechkin. Izv. Math. 69(6), 1113–1135 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Pansu, P.: “Quasiconvex” domains in ℝn. In: Gromov, M. (ed.) Metric Structures for Riemannian and Non-Riemannian Spaces, pp. 393–400. Birkhäuser, Boston (2001). Appendix A Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dept. of MathematicsMoscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations