Discrete & Computational Geometry

, Volume 45, Issue 3, pp 462–496 | Cite as

Relative (p,ε)-Approximations in Geometry

Article

Abstract

We re-examine the notion of relative (p,ε)-approximations, recently introduced in Cohen et al. (Manuscript, 2006), and establish upper bounds on their size, in general range spaces of finite VC-dimension, using the sampling theory developed in Li et al. (J. Comput. Syst. Sci. 62:516–527, 2001) and in several earlier studies (Pollard in Manuscript, 1986; Haussler in Inf. Comput. 100:78–150, 1992; Talagrand in Ann. Probab. 22:28–76, 1994). We also survey the different notions of sampling, used in computational geometry, learning, and other areas, and show how they relate to each other. We then give constructions of smaller-size relative (p,ε)-approximations for range spaces that involve points and halfspaces in two and higher dimensions. The planar construction is based on a new structure—spanning trees with small relative crossing number, which we believe to be of independent interest. Relative (p,ε)-approximations arise in several geometric problems, such as approximate range counting, and we apply our new structures to obtain efficient solutions for approximate range counting in three dimensions. We also present a simple solution for the planar case.

Keywords

Range searching Relative approximations Random sampling Epsilon approximations Epsilon nets Spanning trees with low crossing number Geometric discrepancy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Aronov, B., Chan, T.M., Sharir, M.: On levels in arrangements of lines, segments, planes, and triangles. Discrete Comput. Geom. 19, 315–331 (1998) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Afshani, P., Chan, T.M.: On approximate range counting and depth. Discrete Comput. Geom. 41, 3–21 (2009) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Amenta, N., Bern, M., Eppstein, D., Teng, S.-H.: Regression depth and center points. Discrete Comput. Geom. 23, 305–323 (2000) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Andrzejak, A.: On k-sets and their generalizations. Ph.D. Thesis, Inst. für Theoretische Informatik, ETH Zurich (2000) Google Scholar
  5. 5.
    Andrzejak, A., Aronov, B., Har-Peled, S., Seidel, R., Welzl, E.: Results on k-sets and j-facets via continuous motion arguments. In: Proc. 14th Annu. ACM Sympos. Comput. Geom., pp. 192–199 (1998) Google Scholar
  6. 6.
    Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM J. Comput. 38, 899–921 (2008) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Aronov, B., Sharir, M.: Approximate halfspace range counting. SIAM J. Comput. (to appear) Google Scholar
  8. 8.
    Brönnimann, H.: Derandomization of geometric algorithms. Ph.D. Thesis, Dept. Comput. Sci., Princeton University, Princeton, NJ, May 1995 Google Scholar
  9. 9.
    Brönnimann, H., Chazelle, B., Matoušek, J.: Product range spaces, sensitive sampling, and derandomization. SIAM J. Comput. 28, 1552–1575 (1999) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proc. 43th Annu. IEEE Sympos. Found. Comput. Sci., pp. 617–626 (2002) Google Scholar
  11. 11.
    Chan, T.M.: Random sampling, halfspace range reporting, and construction of (≤k)-levels in three dimensions. SIAM J. Comput. 30(2), 561–575 (2000) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, Cambridge (2001) Google Scholar
  13. 13.
    Chazelle, B.: The discrepancy method in computational geometry. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 983–996. CRC Press, Boca Raton (2004). Chap. 44 Google Scholar
  14. 14.
    Chazelle, B., Welzl, E.: Quasi-optimal range searching in spaces with finite VC-dimension. Discrete Comput. Geom. 4, 467–490 (1989) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Cohen, E., Kaplan, H., Mansour, Y., Sharir, M.: Approximations with relative errors in range spaces of finite VC-dimension. Manuscript (2006) Google Scholar
  17. 17.
    Dey, T.: Improved bounds for planar k-sets and related problems. Discrete Comput. Geom. 19, 373–382 (1998) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Everett, H., Robert, J.-M., van Kreveld, M.: An optimal algorithm for the (≤k)-levels, with applications to separation and transversal problems. Int. J. Comput. Geom. Appl. 6, 247–261 (1996) MATHCrossRefGoogle Scholar
  19. 19.
    Har-Peled, S.: Carnival of samplings: nets, approximations, relative and sensitive. Manuscript (2008). http://arxiv.org/abs/0908.3718 and http://valis.cs.uiuc.edu/~sariel/papers/08/sampling_survey/. Revised version appears as Chap. 6, “Yet even more on sampling” in Har-Peled’s class notes
  20. 20.
    Har-Peled, S., Sharir, M.: Relative (p,ε)-approximations in geometry. Manuscript (2009). Available from http://valis.cs.uiuc.edu/~sariel/papers/06/relative
  21. 21.
    Haussler, D.: Decision theoretic generalizations of the PAC model for neural nets and other learning applications. Inf. Comput. 100, 78–150 (1992) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Haussler, D., Welzl, E.: Epsilon nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Kapelushnik, L.: Computing the k-centrum and the ordered median hyperplane. M.Sc. Thesis, School of Computer Science, Tel Aviv University (2008) Google Scholar
  24. 24.
    Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12, 28–35 (1983) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kaplan, H., Sharir, M.: Randomized incremental construction of three-dimensional convex hulls and planar Voronoi diagrams, and approximate range counting. In: Proc. 17th ACM-SIAM Sympos. Discrete Algorithms, pp. 484–493 (2006) Google Scholar
  26. 26.
    Kaplan, H., Ramos, E., Sharir, M.: Range minima queries with respect to a random permutation, and approximate range counting. Discrete Comput. Geom. (to appear). Also in http://www.math.tau.ac.il/michas/ (2008)
  27. 27.
    Kaplan, H., Ramos, E., Sharir, M.: The overlay of minimization diagrams in a randomized incremental construction. http://www.math.tau.ac.il/~michas/ (2008)
  28. 28.
    Komlós, J., Pach, J., Woeginger, G.: Almost tight bounds for ε-nets. Discrete Comput. Geom. 7, 163–173 (1992) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Li, Y., Long, P.M., Srinivasan, A.: Improved bounds on the sample complexity of learning. J. Comput. Syst. Sci. 62, 516–527 (2001) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Matoušek, J.: Construction of epsilon-nets. Discrete Comput. Geom. 5, 427–448 (1990) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Matoušek, J.: Computing the center of planar point sets. In: Goodman, J.E., Pollack, R., Steiger, W. (eds.) Computational Geometry: Papers from the DIMACS Special Year, pp. 221–230. AMS, Providence (1991) Google Scholar
  32. 32.
    Matoušek, J.: Reporting points in halfspaces. Comput. Geom. Theory Appl. 2, 169–186 (1991) Google Scholar
  33. 33.
    Matoušek, J.: Efficient partition trees. Discrete Comput. Geom. 8, 315–334 (1992) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Matoušek, J.: Geometric Discrepancy. Algorithms and Combinatorics, vol. 18. Springer, Berlin (1999) MATHGoogle Scholar
  35. 35.
    Matoušek, J.: Using the Borsuk-Ulam Theorem. Universitext. Springer, Berlin (2003). Lectures on Topological Methods in Combinatorics and Geometry, Written in cooperation with Anders Björner and Günter M. Ziegler MATHGoogle Scholar
  36. 36.
    Matoušek, J., Welzl, E., Wernisch, L.: Discrepancy and approximations for bounded VC-dimension. Combinatorica 13, 455–466 (1993) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley, New York (1995) MATHGoogle Scholar
  38. 38.
    Pollard, D.: Rates of uniform almost-sure convergence for empirical processes indexed by unbounded classes of functions. Manuscript (1986) Google Scholar
  39. 39.
    Shaul, H., Sharir, M.: Semi-algebraic range reporting and emptiness searching with applications. Manuscript (2009). An earlier incomplete version in: Proc. 16th ACM-SIAM Sympos. Discrete Algorithms, pp. 525–534 (2005) Google Scholar
  40. 40.
    Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Commun. ACM 29, 669–679 (1986) CrossRefMathSciNetGoogle Scholar
  41. 41.
    Talagrand, M.: Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22, 28–76 (1994) MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Vapnik, V.N., Chervonenkis, A.Ya.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264–280 (1971) MATHCrossRefGoogle Scholar
  43. 43.
    Welzl, E.: More on k-sets of finite sets in the plane. Discrete Comput. Geom. 1, 95–100 (1986) MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Welzl, E.: On spanning trees with low crossing numbers. In: Data Structures and Efficient Algorithms, Final Report on the DFG Special Joint Initiative. Lect. Notes in Comp. Sci., vol. 594, pp. 233–249. Springer, Berlin (1992) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of IllinoisUrbanaUSA
  2. 2.School of Computer ScienceTel Aviv UniversityTel AvivIsrael
  3. 3.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations