Discrete & Computational Geometry

, Volume 45, Issue 1, pp 181–220 | Cite as

A Baby Steps/Giant Steps Probabilistic Algorithm for Computing Roadmaps in Smooth Bounded Real Hypersurface

Article

Abstract

We consider the problem of constructing roadmaps of real algebraic sets. This problem was introduced by Canny to answer connectivity questions and solve motion planning problems. Given s polynomial equations with rational coefficients, of degree D in n variables, Canny’s algorithm has a Monte Carlo cost of \(s^{n}\log(s)D^{O(n^{2})}\) operations in ℚ; a deterministic version runs in time \(s^{n}\log(s)D^{O(n^{4})}\) . A subsequent improvement was due to Basu, Pollack, and Roy, with an algorithm of deterministic cost \(s^{d+1}D^{O(n^{2})}\) for the more general problem of computing roadmaps of a semi-algebraic set (dn is the dimension of an associated object).

We give a probabilistic algorithm of complexity \((nD)^{O(n^{1.5})}\) for the problem of computing a roadmap of a closed and bounded hypersurface V of degree D in n variables, with a finite number of singular points. Even under these extra assumptions, no previous algorithm featured a cost better than \(D^{O(n^{2})}\) .

Keywords

Computational real algebraic geometry Algorithms Roadmaps Complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, M.E., Becker, E., Roy, M.-F., Wörmann, T.: Zeroes, multiplicities and idempotents for zerodimensional systems. In: Algorithms in Algebraic Geometry and Applications. Proceedings of MEGA’94. Progress in Mathematics, vol. 142, pp. 1–15. Birkhaüser, Basel (1996) Google Scholar
  2. 2.
    Alzati, A., Ballico, E., Ottaviani, G.: The theorem of Mather on generic projections for singular varieties. Geom. Dedic. 85(1–3), 113–117 (2001) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alzati, A., Ottaviani, G.: The theorem of Mather on generic projections in the setting of algebraic geometry. Manuscr. Math. 74(4), 391–412 (1992) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Atiyah, M., MacDonald, I.: Introduction to Commutative Algebra. Addison-Wesley Series in Mathematics. Addison-Wesley, Reading (1969) MATHGoogle Scholar
  5. 5.
    Bank, B., Giusti, M., Heintz, J., Mbakop, G.-M.: Polar varieties and efficient real equation solving: the hypersurface case. J. Complex. 13(1), 5–27 (1997) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bank, B., Giusti, M., Heintz, J., Mbakop, G.-M.: Polar varieties and efficient real elimination. Math. Z. 238(1), 115–144 (2001) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bank, B., Giusti, M., Heintz, J., Safey El Din, M., Schost, É.: On the geometry of polar varieties. Appl. Algebra Eng. Commun. Comput. 21(1), 33–83 (2010) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Basu, S., Pollack, R., Roy, M.-F.: Computing roadmaps of semi-algebraic sets (extended abstract). In: STOC, pp. 168–173. ACM, New York (1996) Google Scholar
  9. 9.
    Basu, S., Pollack, R., Roy, M.-F.: Computing roadmaps of semi-algebraic sets on a variety. J. AMS 3(1), 55–82 (1999) MathSciNetGoogle Scholar
  10. 10.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, 2nd edn. Algorithms and Computation in Mathematics, vol. 10. Springer, Berlin (2006) MATHGoogle Scholar
  11. 11.
    Boardman, J.M.: Singularities of differentiable maps. Publ. Math. Inst. Hautes Études Sci. 33, 21–57 (1967) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 36. Springer, Berlin (1998) MATHGoogle Scholar
  13. 13.
    Brasselet, J.-P., Damon, J., Trang, L.D., Oka, M. (eds.): Singularities in Geometry and Topology. World Scientific, Singapore (2007) Google Scholar
  14. 14.
    Canny, J.: The complexity of robot motion planning. Ph.D. Thesis, MIT (1987) Google Scholar
  15. 15.
    Canny, J.: Computing roadmaps in general semi-algebraic sets. Comput. J. 36(5), 504–514 (1993) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Coste, M., Shiota, M.: Nash triviality in families of Nash manifolds. Invent. Math. 108(1), 349–368 (1992) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Della Dora, J., Discrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: EUROCAL 85 Vol. 2. LNCS, vol. 204, pp. 289–290. Springer, Berlin (1985) Google Scholar
  18. 18.
    Duval, D.: Rational Puiseux expansions. Compos. Math. 70(2), 119–154 (1989) MATHMathSciNetGoogle Scholar
  19. 19.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, Berlin (1995) MATHGoogle Scholar
  20. 20.
    Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993) MATHCrossRefGoogle Scholar
  21. 21.
    Giusti, M., Heintz, J.: La détermination des points isolés et de la dimension d’une variété algébrique peut se faire en temps polynomial. In: Computational Algebraic Geometry and Commutative Algebra. Symposia Matematica, vol. XXXIV, pp. 216–256. Cambridge University Press, Cambridge (1993) Google Scholar
  22. 22.
    Giusti, M., Heintz, J., Morais, J.-E., Morgenstern, J., Pardo, L.-M.: Straight-line programs in geometric elimination theory. J. Pure Appl. Algebra 124, 101–146 (1998) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Giusti, M., Heintz, J., Morais, J.-E., Pardo, L.-M.: When polynomial equation systems can be solved fast? In: AAECC-11. LNCS, vol. 948, pp. 205–231. Springer, Berlin (1995) Google Scholar
  24. 24.
    Giusti, M., Heintz, J., Morais, J.-E., Pardo, L.-M.: Le rôle des structures de données dans les problèmes d’élimination. C. R. Acad. Paris 325, 1223–1228 (1997) MATHMathSciNetGoogle Scholar
  25. 25.
    Giusti, M., Lecerf, G., Salvy, B.: A Gröbner-free alternative for polynomial system solving. J. Complex. 17(1), 154–211 (2001) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Gournay, L., Risler, J.-J.: Construction of roadmaps in semi-algebraic sets. Appl. Algebra Eng. Commun. Comput. 4(4), 239–252 (1993) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Heintz, J., Roy, M.-F., Solernó, P.: Single exponential path finding in semi-algebraic sets II: The general case. In: Algebraic Geometry and Its Applications, Collections of Papers from Abhyankar’s 60-th Birthday Conference. Purdue University, West-Lafayette (1994) Google Scholar
  28. 28.
    Heintz, J., Schnorr, C.P.: Testing polynomials which are easy to compute (extended abstract). In: STOC, pp. 262–272. ACM, New York (1980) Google Scholar
  29. 29.
    Lecerf, G.: Computing an equidimensional decomposition of an algebraic variety by means of geometric resolutions. In: ISSAC’00, pp. 209–216. ACM, New York (2000) Google Scholar
  30. 30.
    Mather, J.N.: Generic projections. Ann. Math. 98, 226–245 (1973) CrossRefMathSciNetGoogle Scholar
  31. 31.
    Mumford, D.: Algebraic Geometry I, Complex Projective Varieties. Classics in Mathematics. Springer, Berlin (1976) MATHGoogle Scholar
  32. 32.
    Rouillier, F.: Solving zero-dimensional systems through the Rational Univariate Representation. Appl. Algebra Eng. Commun. Comput. 9(5), 433–461 (1999) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Safey el Din, M., Schost, É.: Polar varieties and computation of one point in each connected component of a smooth real algebraic set. In: ISSAC’03, pp. 224–231. ACM, New York (2003) Google Scholar
  34. 34.
    Schost, É.: Computing parametric geometric resolutions. Appl. Algebra Eng. Commun. Comput. 13(5), 349–393 (2003) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Schwartz, J.T., Sharir, M.: On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds. Adv. Appl. Math. 4(3), 298–351 (1983) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Shafarevich, I.: Basic Algebraic Geometry 1. Springer, Berlin (1977) Google Scholar
  37. 37.
    Thom, R.: Les singularités des applications différentiables. Ann. Inst. Fourier 6, 43–87 (1955–1956) MathSciNetGoogle Scholar
  38. 38.
    Todd, J.A.: The arithmetical invariants of algebraic loci. Proc. Lond. Math. Soc. 43, 190–225 (1937) MATHCrossRefGoogle Scholar
  39. 39.
    Zariski, O., Samuel, P.: Commutative Algebra. Van Nostrand, Princeton (1958) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.SALSA Project, CNRS, UMR 7606, LIP6, Case 169UPMC, Univ Paris 06, INRIA, Paris-Rocquencourt CenterParisFrance
  2. 2.Computer Science Department, Room 415, Middlesex CollegeThe University of Western OntarioLondonCanada

Personalised recommendations