Discrete & Computational Geometry

, Volume 44, Issue 3, pp 706–723 | Cite as

Decomposition of Multiple Coverings into More Parts

  • Greg Aloupis
  • Jean Cardinal
  • Sébastien Collette
  • Stefan Langerman
  • David Orden
  • Pedro Ramos


We prove that for every centrally symmetric convex polygon Q, there exists a constant α such that any locally finite α k-fold covering of the plane by translates of Q can be decomposed into k coverings. This improves on a quadratic upper bound proved by Pach and Tóth. The question is motivated by a sensor network problem, in which a region has to be monitored by sensors with limited battery life.


Cover decomposition Geometric hypergraphs Centrally symmetric polygons 


  1. 1.
    Ali Abam, M., de Berg, M., Poon, S.: Fault-tolerant conflict-free coloring. In: Proceedings of the Canadian Conference on Computational Geometry (CCCG’08) (2008) Google Scholar
  2. 2.
    Abellanas, M., Bose, P., Garcia, J., Hurtado, F., Nicolas, C., Ramos, P.: On properties of higher order Delaunay graphs with applications. Int. J. Comput. Geom. Appl. (to appear) Google Scholar
  3. 3.
    Aloupis, G., Cardinal, J., Collette, S., Langerman, S., Smorodinsky, S.: Coloring geometric range spaces. In: Proceedings of the 8th Latin American Theoretical Informatics (LATIN’08). Lecture Notes in Computer Science, vol. 4957, pp. 146–157. Springer, Berlin (2008) CrossRefGoogle Scholar
  4. 4.
    Brass, P., Moser, W.O.J., Pach, J.: Research Problems in Discrete Geometry. Springer, Berlin (2005) zbMATHGoogle Scholar
  5. 5.
    Buchsbaum, A., Efrat, A., Jain, S., Venkatasubramanian, S., Yi, K.: Restricted strip covering and the sensor cover problem. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’07), pp. 1056–1063 (2007) Google Scholar
  6. 6.
    Elekes, M., Matrai, T., Soukup, L.: On splitting infinite-fold covers. Fundam. Math. (to appear) Google Scholar
  7. 7.
    Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33(1), 94–136 (2004) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gibson, M., Varadarajan, K.: Decomposing coverings and the planar sensor cover problem. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS09) (2009) Google Scholar
  9. 9.
    Mani, P., Pach, J.: Decomposition problems for multiple coverings with unit balls. Unpublished manuscript (1986) Google Scholar
  10. 10.
    Pach, J.: Decomposition of multiple packing and covering. In: 2. Kolloq. über Diskrete Geom., pp. 169–178. Inst. Math. Univ. Salzburg, Salzburg (1980) Google Scholar
  11. 11.
    Pach, J.: Covering the plane with convex polygons. Discrete Comput. Geom. 1, 73–81 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pach, J., Tardos, G., Tóth, G.: Indecomposable coverings. In: The China–Japan Joint Conference on Discrete Geometry, Combinatorics and Graph Theory (CJCDGCGT’05). Lecture Notes in Computer Science, vol. 4381, pp. 135–148. Springer, Berlin (2007) CrossRefGoogle Scholar
  13. 13.
    Pach, J., Tóth, G.: Decomposition of multiple coverings into many parts. Comput. Geom. Theory Appl. 42(2), 127–133 (2009) zbMATHGoogle Scholar
  14. 14.
    Pálvölgyi, D.: Indecomposable coverings with concave polygons. Discrete Comput. Geom. (to appear) Google Scholar
  15. 15.
    Pálvölgyi, D., Tóth, G.: Convex polygons are cover-decomposable. Discrete Comput. Geom. (to appear) Google Scholar
  16. 16.
    Tardos, G., Tóth, G.: Multiple coverings of the plane with triangles. Discrete Comput. Geom. 38(2), 443–450 (2007) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Greg Aloupis
    • 1
  • Jean Cardinal
    • 1
  • Sébastien Collette
    • 1
  • Stefan Langerman
    • 1
  • David Orden
    • 2
  • Pedro Ramos
    • 2
  1. 1.Université Libre de Bruxelles (ULB)BruxellesBelgium
  2. 2.Universidad de AlcaláAlcaláSpain

Personalised recommendations