Discrete & Computational Geometry

, Volume 43, Issue 2, pp 375–392

# Greedy Drawings of Triangulations

Article

## Abstract

Greedy Routing is a class of routing algorithms in which the packets are forwarded in a manner that reduces the distance to the destination at every step. In an attempt to provide theoretical guarantees for a class of greedy routing algorithms, Papadimitriou and Ratajczak (Theor. Comput. Sci. 344(1):3–14, 2005) came up with the following conjecture:

Any 3-connected planar graph can be drawn in the plane such that for every pair of vertices s and t a distance decreasing path can be found. A path s=v1,v2,…,vk=t in a drawing is said to be distance decreasing if ‖vit‖<‖vi−1t‖,2≤ik where ‖…‖ denotes the Euclidean distance.

We settle this conjecture in the affirmative for the case of triangulations.

A partitioning of the edges of a triangulation G into 3 trees, called the realizer of G, was first developed by Schnyder who also gave a drawing algorithm based on this. We generalize Schnyder’s algorithm to obtain a whole class of drawings of any given triangulation G. We show, using the Knaster–Kuratowski–Mazurkiewicz Theorem, that some drawing of G belonging to this class is greedy.

Graph drawing Routing Greedy routing Triangulations Fixed point theorem Schnyder realizers Planar graphs

## Preview

### References

1. 1.
Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected planar graphs. Algorithmica 47, 399–420 (2007)
2. 2.
Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. In: DIALM ’99: Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pp. 48–55. ACM, New York (1999)
3. 3.
Brehm, E.: 3-orientations and Schnyder 3-tree decompositions. Diplomarbeit, Freie Universitat, Berlin (2000) Google Scholar
4. 4.
de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fáry embeddings of planar graphs. In: STOC ’88: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 426–433. ACM, New York (1988)
5. 5.
Felsner, S.: Convex drawings of planar graphs and the order dimension of 3-polytopes. Order 18, 19–37 (2001)
6. 6.
Felsner, S.: Geometric Graphs and Arrangements. Vieweg, Wiesbaden (2004)
7. 7.
Fusy, E., Poulalhon, D., Schaeffer, G.: Dissections and trees, with applications to optimal mesh encoding and to random sampling. In: SODA ’05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 690–699. Society for Industrial and Applied Mathematics, Philadelphia (2005) Google Scholar
8. 8.
Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanner for routing in mobile networks. In: MobiHoc ’01: Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking & Computing, pp. 45–55. ACM, New York (2001)
9. 9.
Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)
10. 10.
Kant, G.: Drawing planar graphs using the lmc-ordering. In: Foundations of Computer Science, Proceedings, 33rd Annual Symposium on, pp. 101–110 (1992) Google Scholar
11. 11.
Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: MobiCom ’00: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, pp. 243–254. ACM, New York (2000)
12. 12.
Knaster, B., Kuratowski, C., Mazurkiewicz, C.: Ein Beweis des Fixpunktsatzes fur n-dimensionale Simplexe. Fundam. Math. 14, 132–137 (1929)
13. 13.
Kleinberg, R.: Personal communication (2006) Google Scholar
14. 14.
Kleinberg, R.: Geographic routing in hyperbolic space. In: Workshop on Parallelism in Algorithms and Architectures. University of Maryland, College Park, May 12, 2006 Google Scholar
15. 15.
Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of theory and practice. In: PODC ’03: Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing, pp. 63–72. ACM, New York (2003)
16. 16.
Linial, N., Lovasz, L., Wigderson, A.: Rubber bands, convex embeddings and graph connectivity. Combinatorica 8(1), 91–102 (1988)
17. 17.
Matoušek, J.: Using the Borsuk–Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry. Springer, Berlin (2007) Google Scholar
18. 18.
Maymounkov, P.: Greedy embeddings, trees, and Euclidean vs. Lobachevsky geometry (manuscript, 2006) Google Scholar
19. 19.
Nishizeki, T., Rahman, S.: Planar Graph Drawing. World Scientific, Singapore (2004)
20. 20.
Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344(1), 3–14 (2005)
21. 21.
Rote, G.: Strictly convex drawings of planar graphs. In: SODA ’05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 728–734. Society for Industrial and Applied Mathematics, Philadelphia (2005) Google Scholar
22. 22.
Rao, A., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: MobiCom ’03: Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, pp. 96–108. ACM, New York (2003)
23. 23.
Schnyder, W.: Embedding planar graphs on the grid. In: SODA ’90: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148. Society for Industrial and Applied Mathematics, Philadelphia (1990) Google Scholar
24. 24.
Tollis, I.G., Di Battista, G., Eades, P., Tamassia, R.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, New York (1998) Google Scholar
25. 25.
Tutte, W.T.: A theorem on planar graphs. Trans. Am. Math. Soc. 82, 99–116 (1956)
26. 26.
Tutte, W.T.: Convex representations of graphs. In: Proceedings of the London Mathematical Society, pp. 304–320 (1960) Google Scholar