Discrete & Computational Geometry

, Volume 43, Issue 2, pp 375–392

Greedy Drawings of Triangulations

Article

Abstract

Greedy Routing is a class of routing algorithms in which the packets are forwarded in a manner that reduces the distance to the destination at every step. In an attempt to provide theoretical guarantees for a class of greedy routing algorithms, Papadimitriou and Ratajczak (Theor. Comput. Sci. 344(1):3–14, 2005) came up with the following conjecture:

Any 3-connected planar graph can be drawn in the plane such that for every pair of vertices s and t a distance decreasing path can be found. A path s=v1,v2,…,vk=t in a drawing is said to be distance decreasing if ‖vit‖<‖vi−1t‖,2≤ik where ‖…‖ denotes the Euclidean distance.

We settle this conjecture in the affirmative for the case of triangulations.

A partitioning of the edges of a triangulation G into 3 trees, called the realizer of G, was first developed by Schnyder who also gave a drawing algorithm based on this. We generalize Schnyder’s algorithm to obtain a whole class of drawings of any given triangulation G. We show, using the Knaster–Kuratowski–Mazurkiewicz Theorem, that some drawing of G belonging to this class is greedy.

Graph drawing Routing Greedy routing Triangulations Fixed point theorem Schnyder realizers Planar graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected planar graphs. Algorithmica 47, 399–420 (2007) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. In: DIALM ’99: Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pp. 48–55. ACM, New York (1999) CrossRefGoogle Scholar
  3. 3.
    Brehm, E.: 3-orientations and Schnyder 3-tree decompositions. Diplomarbeit, Freie Universitat, Berlin (2000) Google Scholar
  4. 4.
    de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fáry embeddings of planar graphs. In: STOC ’88: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 426–433. ACM, New York (1988) CrossRefGoogle Scholar
  5. 5.
    Felsner, S.: Convex drawings of planar graphs and the order dimension of 3-polytopes. Order 18, 19–37 (2001) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Felsner, S.: Geometric Graphs and Arrangements. Vieweg, Wiesbaden (2004) MATHGoogle Scholar
  7. 7.
    Fusy, E., Poulalhon, D., Schaeffer, G.: Dissections and trees, with applications to optimal mesh encoding and to random sampling. In: SODA ’05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 690–699. Society for Industrial and Applied Mathematics, Philadelphia (2005) Google Scholar
  8. 8.
    Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanner for routing in mobile networks. In: MobiHoc ’01: Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking & Computing, pp. 45–55. ACM, New York (2001) CrossRefGoogle Scholar
  9. 9.
    Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kant, G.: Drawing planar graphs using the lmc-ordering. In: Foundations of Computer Science, Proceedings, 33rd Annual Symposium on, pp. 101–110 (1992) Google Scholar
  11. 11.
    Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: MobiCom ’00: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, pp. 243–254. ACM, New York (2000) CrossRefGoogle Scholar
  12. 12.
    Knaster, B., Kuratowski, C., Mazurkiewicz, C.: Ein Beweis des Fixpunktsatzes fur n-dimensionale Simplexe. Fundam. Math. 14, 132–137 (1929) MATHGoogle Scholar
  13. 13.
    Kleinberg, R.: Personal communication (2006) Google Scholar
  14. 14.
    Kleinberg, R.: Geographic routing in hyperbolic space. In: Workshop on Parallelism in Algorithms and Architectures. University of Maryland, College Park, May 12, 2006 Google Scholar
  15. 15.
    Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of theory and practice. In: PODC ’03: Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing, pp. 63–72. ACM, New York (2003) CrossRefGoogle Scholar
  16. 16.
    Linial, N., Lovasz, L., Wigderson, A.: Rubber bands, convex embeddings and graph connectivity. Combinatorica 8(1), 91–102 (1988) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Matoušek, J.: Using the Borsuk–Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry. Springer, Berlin (2007) Google Scholar
  18. 18.
    Maymounkov, P.: Greedy embeddings, trees, and Euclidean vs. Lobachevsky geometry (manuscript, 2006) Google Scholar
  19. 19.
    Nishizeki, T., Rahman, S.: Planar Graph Drawing. World Scientific, Singapore (2004) MATHGoogle Scholar
  20. 20.
    Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344(1), 3–14 (2005) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rote, G.: Strictly convex drawings of planar graphs. In: SODA ’05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 728–734. Society for Industrial and Applied Mathematics, Philadelphia (2005) Google Scholar
  22. 22.
    Rao, A., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: MobiCom ’03: Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, pp. 96–108. ACM, New York (2003) CrossRefGoogle Scholar
  23. 23.
    Schnyder, W.: Embedding planar graphs on the grid. In: SODA ’90: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148. Society for Industrial and Applied Mathematics, Philadelphia (1990) Google Scholar
  24. 24.
    Tollis, I.G., Di Battista, G., Eades, P., Tamassia, R.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, New York (1998) Google Scholar
  25. 25.
    Tutte, W.T.: A theorem on planar graphs. Trans. Am. Math. Soc. 82, 99–116 (1956) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tutte, W.T.: Convex representations of graphs. In: Proceedings of the London Mathematical Society, pp. 304–320 (1960) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations