Discrete & Computational Geometry

, Volume 44, Issue 1, pp 149–166 | Cite as

Totally Splittable Polytopes

Article

Abstract

A split of a polytope is a (necessarily regular) subdivision with exactly two maximal cells. A polytope is totally splittable if each triangulation (without additional vertices) is a common refinement of splits. This paper establishes a complete classification of the totally splittable polytopes.

Keywords

Discrete Comput Geom Double Point Oriented Matroid Vertex Split Maximal Simplex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bandelt, H.-J., Dress, A.: A canonical decomposition theory for metrics on a finite set. Adv. Math. 92(1), 47–105 (1992). MR 1153934 (93h:54022) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bayer, M.M.: Equidecomposable and weakly neighborly polytopes. Israel J. Math. 81(3), 301–320 (1993). MR 1231196 (94m:52015) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Billera, L.J., Gel’fand, I.M., Sturmfels, B.: Duality and minors of secondary polyhedra. J. Combin. Theory, Ser. B 57(2), 258–268 (1993). MR 1207491 (93m:52014) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 46. Cambridge University Press, Cambridge (1999). MR 1744046 (2000j:52016) MATHGoogle Scholar
  5. 5.
    De Loera, J., Rambau, J., Santos, F.: Triangulations: Structures and Algorithms. Springer, to appear Google Scholar
  6. 6.
    Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994). MR 1264417 (95e:14045) CrossRefGoogle Scholar
  7. 7.
    Grünbaum, B.: Convex Polytopes, 2nd edn. Graduate Texts in Mathematics, vol. 221. Springer, New York (2003). Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler. MR 1976856 (2004b:52001) Google Scholar
  8. 8.
    Herrmann, S., Jensen, A., Joswig, M., Sturmfels, B.: How to draw tropical planes. Electron. J. Combin. 16(2), R6 (2009–2010) MathSciNetGoogle Scholar
  9. 9.
    Herrmann, S., Joswig, M.: Splitting polytopes. Münster J. Math. 1, 109–141 (2008) MATHMathSciNetGoogle Scholar
  10. 10.
    Hirai, H.: A geometric study of the split decomposition. Discrete Comput. Geom. 36(2), 331–361 (2006). MR 2252108 (2007f:52025) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Shemer, I.: Neighborly polytopes. Israel J. Math. 43(4), 291–314 (1982). MR 693351 (84k:52008) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995). MR 1311028 (96a:52011) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Fachbereich MathematikTU DarmstadtDarmstadtGermany
  2. 2.Institut für MathematikTU BerlinBerlinGermany

Personalised recommendations