Discrete & Computational Geometry

, Volume 44, Issue 1, pp 75–90 | Cite as

Vietoris–Rips Complexes of Planar Point Sets

  • Erin W. ChambersEmail author
  • Vin de Silva
  • Jeff Erickson
  • Robert Ghrist


Fix a finite set of points in Euclidean n-space \(\mathbb{E}^{n}\) , thought of as a point-cloud sampling of a certain domain \(D\subset\mathbb{E}^{n}\) . The Vietoris–Rips complex is a combinatorial simplicial complex based on proximity of neighbors that serves as an easily-computed but high-dimensional approximation to the homotopy type of D. There is a natural “shadow” projection map from the Vietoris–Rips complex to \(\mathbb{E}^{n}\) that has as its image a more accurate n-dimensional approximation to the homotopy type of D.

We demonstrate that this projection map is 1-connected for the planar case n=2. That is, for planar domains, the Vietoris–Rips complex accurately captures connectivity and fundamental group data. This implies that the fundamental group of a Vietoris–Rips complex for a planar point set is a free group. We show that, in contrast, introducing even a small amount of uncertainty in proximity detection leads to “quasi”-Vietoris–Rips complexes with nearly arbitrary fundamental groups. This topological noise can be mitigated by examining a pair of quasi-Vietoris–Rips complexes and using ideas from persistent topology. Finally, we show that the projection map does not preserve higher-order topological data for planar sets, nor does it preserve fundamental group data for point sets in dimension larger than three.


Topology Rips complex Quasi-Rips complex 


  1. 1.
    Barrière, L., Fraigniaud, P., Narayanan, L.: Robust position-based routing in wireless ad hoc networks with unstable transmission ranges. In: Proc. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (2001) Google Scholar
  2. 2.
    Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, 1819–1872. North-Holland, Amsterdam (1995) Google Scholar
  3. 3.
    Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.: Persistence barcodes for shapes. Int. J. Shape Model. 11, 149–187 (2005) zbMATHCrossRefGoogle Scholar
  4. 4.
    Carlsson, E., Carlsson, G., de Silva, V.: An algebraic topological method for feature identification. Int. J. Comput. Geom. Appl. 16(4), 291–314 (2006) zbMATHCrossRefGoogle Scholar
  5. 5.
    Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008) CrossRefGoogle Scholar
  6. 6.
    Chambers, E., Erickson, J., Worah, P.: Testing contractibility in planar Rips complexes. In: Proc. Symp. on Comp. Geom. (SoCG), pp. 251–259 (2008) Google Scholar
  7. 7.
    Damian, M., Pandit, S., Pemmaraju, S.: Local approximation schemes for topology control. In: Proc. ACM Symp. on Prin. of Dist. Comput. (PODC), pp. 208–217 (2006) Google Scholar
  8. 8.
    de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: SPBG’04 Symposium on Point-Based Graphics, pp. 157–166 (2004) Google Scholar
  9. 9.
    de Silva, V., Ghrist, R.: Coordinate-free coverage in sensor networks with controlled boundaries via homology. Int. J. Robot. Res. 25(12), 1205–1222 (2006) CrossRefGoogle Scholar
  10. 10.
    de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Alg. Geom. Top. 7, 339–358 (2007) zbMATHCrossRefGoogle Scholar
  11. 11.
    Eckhoff, J.: Helly, radon, and carathéodory type theorems. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry. North-Holland, Amsterdam (1993), pp. 389–448 Google Scholar
  12. 12.
    Fang, Q., Gao, J., Guibas, L.: Locating and bypassing routing holes in sensor networks. In: Proc. 23rd Conference of the IEEE Communications Society (InfoCom) (2004) Google Scholar
  13. 13.
    Gromov, M.: Hyperbolic groups. In: Essays in Group Theory. MSRI Publ., vol. 8. Springer, Berlin (1987) Google Scholar
  14. 14.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) zbMATHGoogle Scholar
  15. 15.
    Haussman, J.-C.: On the Vietoris–Rips complexes and a cohomology theory for metric spaces. In: Prospects in Topology. Ann. of Math. Stud., vol. 138. Princeton Univ. Press, Princeton (1995), pp. 175–188 Google Scholar
  16. 16.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-hoc networks beyond unit disk graphs. Wirel. Netw. 14(5), 715–729 (2008) CrossRefGoogle Scholar
  17. 17.
    Muhammad, A., Jadbabaie, A.: Dynamic coverage verification in mobile sensor networks via switched higher order Laplacians. In: Robotics: Science & Systems (2007) Google Scholar
  18. 18.
    Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1), 419–441 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Vietoris, L.: Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann. 97, 454–472 (1927) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Erin W. Chambers
    • 1
    Email author
  • Vin de Silva
    • 2
  • Jeff Erickson
    • 3
  • Robert Ghrist
    • 4
  1. 1.Department of Mathematics and Computer ScienceSt. Louis UniversitySt. LouisUSA
  2. 2.Department of MathematicsPomona CollegeClaremontUSA
  3. 3.Department of Computer ScienceUniversity of IllinoisUrbana-ChampaignUSA
  4. 4.Departments of Mathematics and Electrical/Systems EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations