Advertisement

Discrete & Computational Geometry

, Volume 44, Issue 3, pp 645–653 | Cite as

The Least-Perimeter Partition of a Sphere into Four Equal Areas

  • Max Engelstein
Article

Abstract

We prove that the least-perimeter partition of the sphere into four regions of equal area is a tetrahedral partition.

Keywords

Minimal partitions Isoperimetric problem Tetrahedral partition 

References

  1. 1.
    Almgren, F.J. Jr., Taylor, J.E.: Geometry of soap films. Sci. Am. 235, 82–93 (1976) CrossRefGoogle Scholar
  2. 2.
    Bernstein, F.: Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene. Math. Ann. 60, 117–136 (1905) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Engelstein, M., Maurmann, Q., Marcuccio, A., Pritchard, T.: Sphere partitions and density problems. NY J. Math. 15, 97–123 (2009) MATHMathSciNetGoogle Scholar
  4. 4.
    Fejes Tóth, L.: Regular Figures. Pergamon Press, New York (1964) MATHGoogle Scholar
  5. 5.
    Hales, T.: The honeycomb conjecture. Discrete Comput. Geom. 25, 1–22 (2001) MATHMathSciNetGoogle Scholar
  6. 6.
    Hales, T.: The honeycomb conjecture on the sphere. Arxiv.org (2002) Google Scholar
  7. 7.
    Heppes, A.: On surface-minimizing polyhedral decompositions. Discrete Comput. Geom. 13, 529–539 (1995) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lemarle, E.: Sur la stabilité des systèmes liquides en lames minces. Mém. Acad. R. Belg. 35, 3–104 (1864) Google Scholar
  9. 9.
    Masters, J.: The perimeter-minimizing enclosure of two areas in S 2. Real Anal. Exch. 22, 1–10 (1996) MathSciNetGoogle Scholar
  10. 10.
    Maurmann, Q., Engelstein, M., Marcuccio, A., Pritchard, T.: Asymptotics of perimeter-minimizing partitions. Can. Math. Bull. (2009, to appear) Google Scholar
  11. 11.
    Morgan, F.: Soap bubbles in R 2 and in surfaces. Pac. J. Math. 165, 347–361 (1994) MATHGoogle Scholar
  12. 12.
    Quinn, C.: Least-perimeter partitions of the sphere. Rose-Hulman Und. Math. J. 8(2) (2007) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations