Discrete & Computational Geometry

, Volume 44, Issue 3, pp 645–653 | Cite as

The Least-Perimeter Partition of a Sphere into Four Equal Areas

Article

Abstract

We prove that the least-perimeter partition of the sphere into four regions of equal area is a tetrahedral partition.

Keywords

Minimal partitions Isoperimetric problem Tetrahedral partition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almgren, F.J. Jr., Taylor, J.E.: Geometry of soap films. Sci. Am. 235, 82–93 (1976) CrossRefGoogle Scholar
  2. 2.
    Bernstein, F.: Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene. Math. Ann. 60, 117–136 (1905) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Engelstein, M., Maurmann, Q., Marcuccio, A., Pritchard, T.: Sphere partitions and density problems. NY J. Math. 15, 97–123 (2009) MATHMathSciNetGoogle Scholar
  4. 4.
    Fejes Tóth, L.: Regular Figures. Pergamon Press, New York (1964) MATHGoogle Scholar
  5. 5.
    Hales, T.: The honeycomb conjecture. Discrete Comput. Geom. 25, 1–22 (2001) MATHMathSciNetGoogle Scholar
  6. 6.
    Hales, T.: The honeycomb conjecture on the sphere. Arxiv.org (2002) Google Scholar
  7. 7.
    Heppes, A.: On surface-minimizing polyhedral decompositions. Discrete Comput. Geom. 13, 529–539 (1995) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lemarle, E.: Sur la stabilité des systèmes liquides en lames minces. Mém. Acad. R. Belg. 35, 3–104 (1864) Google Scholar
  9. 9.
    Masters, J.: The perimeter-minimizing enclosure of two areas in S 2. Real Anal. Exch. 22, 1–10 (1996) MathSciNetGoogle Scholar
  10. 10.
    Maurmann, Q., Engelstein, M., Marcuccio, A., Pritchard, T.: Asymptotics of perimeter-minimizing partitions. Can. Math. Bull. (2009, to appear) Google Scholar
  11. 11.
    Morgan, F.: Soap bubbles in R 2 and in surfaces. Pac. J. Math. 165, 347–361 (1994) MATHGoogle Scholar
  12. 12.
    Quinn, C.: Least-perimeter partitions of the sphere. Rose-Hulman Und. Math. J. 8(2) (2007) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations