Advertisement

Discrete & Computational Geometry

, Volume 43, Issue 2, pp 393–401 | Cite as

On a Question of Erdős and Ulam

  • Jozsef Solymosi
  • Frank de Zeeuw
Article

Abstract

Ulam asked in 1945 if there is an everywhere dense rational set, i.e., 1 a point set in the plane with all its pairwise distances rational. Erdős conjectured that if a set S has a dense rational subset, then S should be very special. The only known types of examples of sets with dense (or even just infinite) rational subsets are lines and circles. In this paper we prove Erdős’ conjecture for algebraic curves by showing that no irreducible algebraic curve other than a line or a circle contains an infinite rational set.

Keywords

Rational distances Erdős problems in discrete geometry Rational points 

References

  1. 1.
    Anning, N.H., Erdős, P.: Integral distances. Bull. Am. Math. Soc. 51, 598–600 (1945) zbMATHCrossRefGoogle Scholar
  2. 2.
    Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry, 1st edn. Springer, Berlin (2005). XII, 499 p. zbMATHGoogle Scholar
  3. 3.
    Campbell, G.: Points on y=x 2 at rational distance. Math. Comput. 73, 2093–2108 (2004) zbMATHGoogle Scholar
  4. 4.
    Choudhry, A.: Points at rational distances on a parabola. Rocky Mt. J. Math. 36(2), 413–424 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Erdős, P.: Integral distances. Bull. Am. Math. Soc. 51, 996 (1945) CrossRefGoogle Scholar
  6. 6.
    Erdős, P.: Verchu niakoy geometritchesky zadatchy. Fiz.-Mat. Spis. Bŭlgar. Akad. Nauk 5(38), 205–212 (1962). (On some geometric problems, in Bulgarian) Google Scholar
  7. 7.
    Erdős, P.: On some problems of elementary and combinatorial geometry. Ann. Mat. Pura Appl. (IV) CIII, 99–108 (1975) CrossRefGoogle Scholar
  8. 8.
    Erdős, P.: Néhány elemi geometriai problémáról. Középisk Mat. Lapok 61, 49–54 (1980). (On some problems in elementary geometry, in Hungarian) Google Scholar
  9. 9.
    Erdős, P.: Combinatorial problems in geometry. Math. Chron. 12, 35–54 (1983) Google Scholar
  10. 10.
    Erdős, P.: Ulam, the man and the mathematician. J. Graph Theory 9(4), 445–449 (1985) Also appears in Creation Math. 19 (1986), 13–16 CrossRefMathSciNetGoogle Scholar
  11. 11.
    Erdős, P.: Some combinatorial and metric problems in geometry. In: Colloquia Mathematica Societatis János Bolyai, vol. 48, pp. 167–177. Intuitive Geometry, Siófok (1985) Google Scholar
  12. 12.
    Erdős, P., Purdy, G.B.: Extremal problems in combinatorial geometry. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, pp. 809–875. Elsevier, Amsterdam (1995) Google Scholar
  13. 13.
    Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983). (Finiteness theorems for abelian varieties over number fields) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Guy, R.: Unsolved Problems in Number Theory, 3rd edn. Problem Books in Mathematics Subseries: Unsolved Problems in Intuitive Mathematics, vol. 1. Springer, Berlin (2004). XVIII, 438 p. zbMATHGoogle Scholar
  15. 15.
    Harborth, H., Kemnitz, A., Möller, M.: An upper bound for the minimum diameter of integral point sets. Discrete Comput. Geom. 9(4), 427–432 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Huff, G.B.: Diophantine problems in geometry and elliptic ternary forms. Duke Math. J. 15, 443–453 (1948) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kemnitz, A.: Punktmengen mit ganzzahligen Abständen. Habilitationsschrift, TU Braunschweig (1988) zbMATHGoogle Scholar
  18. 18.
    Kreisel, T., Kurz, S.: There are integral heptagons, no three points on a line, no four on a circle. Discrete Comput. Geom. 39(4), 786–790 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Peeples, W.D. Jr.: Elliptic curves and rational distance sets. Proc. Am. Math. Soc. 5, 29–33 (1954) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Silverman, J.: The Arithmetic of Elliptic Curves. Springer, Berlin (1986) zbMATHGoogle Scholar
  21. 21.
    Solymosi, J.: Note on integral distances. Discrete Comput. Geom. 30(2), 337–342 (2003) zbMATHMathSciNetGoogle Scholar
  22. 22.
    Ulam, S.M.: A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics, vol. 8. Interscience, New York (1960). XIII, 150 p. zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsUBCVancouverCanada

Personalised recommendations