Discrete & Computational Geometry

, Volume 42, Issue 1, pp 71–93 | Cite as

The Theory of Multidimensional Persistence

Article

Abstract

Persistent homology captures the topology of a filtration—a one-parameter family of increasing spaces—in terms of a complete discrete invariant. This invariant is a multiset of intervals that denote the lifetimes of the topological entities within the filtration. In many applications of topology, we need to study a multifiltration: a family of spaces parameterized along multiple geometric dimensions. In this paper, we show that no similar complete discrete invariant exists for multidimensional persistence. Instead, we propose the rank invariant, a discrete invariant for the robust estimation of Betti numbers in a multifiltration, and prove its completeness in one dimension.

Keywords

Computational topology Multidimensional analysis Persistent homology Persistence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969) MATHGoogle Scholar
  2. 2.
    Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.J.: Persistence barcodes for shapes. Int. J. Shape Model. 11(2), 149–187 (2005) MATHCrossRefGoogle Scholar
  3. 3.
    Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008) CrossRefGoogle Scholar
  4. 4.
    Chazal, F., Lieutier, A.: Weak feature size and persistent homology: computing homology of solids in ℝn from noisy data samples. In: Proceedings of ACM Symposium on Computational Geometry, pp. 255–262 (2005) Google Scholar
  5. 5.
    Cohen, D.C., Orlik, P.: Gauss–Manin connections for arrangements I. Eigenvalues. Compos. Math. 136(3), 299–316 (2003) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Collins, A., Zomorodian, A., Carlsson, G., Guibas, L.: A barcode shape descriptor for curve point cloud data. Comput. Graph. 28, 881–894 (2004) CrossRefGoogle Scholar
  7. 7.
    de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Proceedings of IEEE/Eurographics Symposium on Point-Based Graphics, pp. 157–166 (2004) Google Scholar
  8. 8.
    de Silva, V., Ghrist, R., Muhammad, A.: Blind swarms for coverage in 2-D. In: Proceedings of Robotics: Science and Systems. http://www.roboticsproceedings.org/rss01/ (2005)
  9. 9.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002) MATHMathSciNetGoogle Scholar
  10. 10.
    Frosini, P., Mulazzani, M.: Size homotopy groups for computation of natural size distances. Bull. Belg. Math. Soc. Simon Stevin 6(3), 455–464 (1999) MATHMathSciNetGoogle Scholar
  11. 11.
    Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. New Ser. 45(1), 61–75 (2008) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gromov, M.: Hyperbolic groups. In: Gersten, S. (ed.) Essays in Group Theory, pp. 75–263. Springer, New York (1987) Google Scholar
  13. 13.
    Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.T., Hamann, B.: Topology-based simplification for feature extraction from 3D scalar fields. In: Proceedings of IEEE Visualization, pp. 275–280 (2005) Google Scholar
  14. 14.
    Knudson, K.P.: A refinement of multi-dimensional persistence. Homotopy Homol. Appl. 10, 259–281 (2008) MATHMathSciNetGoogle Scholar
  15. 15.
    Lee, A., Mumford, D., Pedersen, K.: The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54(1–3), 83–103 (2003) MATHCrossRefGoogle Scholar
  16. 16.
    Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34. Springer, Berlin (1994) Google Scholar
  17. 17.
    Serre, J.-P.: Local Algebra. Springer, Berlin (2000) MATHGoogle Scholar
  18. 18.
    Terao, H.: Moduli space of combinatorially equivalent arrangements of hyperplanes and logarithmic Gauss–Manin connections. Topol. Appl. 118(1–2), 255–274 (2002) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Weibel, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994) MATHGoogle Scholar
  20. 20.
    Zomorodian, A.: Computational topology. In: Atallah, M., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, 2nd edn. CRC, Boca Raton (2009) (in press) Google Scholar
  21. 21.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA
  2. 2.Department of Computer ScienceDartmouth CollegeHanoverUSA

Personalised recommendations