Discrete & Computational Geometry

, Volume 42, Issue 1, pp 37–70

Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes

  • Jean-Daniel Boissonnat
  • Leonidas J. Guibas
  • Steve Y. Oudot
Article

Abstract

It is a well-established fact that the witness complex is closely related to the restricted Delaunay triangulation in low dimensions. Specifically, it has been proved that the witness complex coincides with the restricted Delaunay triangulation on curves, and is still a subset of it on surfaces, under mild sampling conditions. In this paper, we prove that these results do not extend to higher-dimensional manifolds, even under strong sampling conditions such as uniform point density. On the positive side, we show how the sets of witnesses and landmarks can be enriched, so that the nice relations that exist between restricted Delaunay triangulation and witness complex hold on higher-dimensional manifolds as well. We derive from our structural results an algorithm that reconstructs manifolds of any arbitrary dimension or co-dimension at different scales. The algorithm combines a farthest-point refinement scheme with a vertex pumping strategy. It is very simple conceptually, and it does not require the input point sample to be sparse. Its running time is bounded by c(d)n2, where n is the size of the input point cloud, and c(d) is a constant depending solely (yet exponentially) on the dimension d of the ambient space. Although this running time makes our reconstruction algorithm rather theoretical, recent work has shown that a variant of our approach can be made tractable in arbitrary dimensions, by building upon the results of this paper.

Keywords

Manifold Reconstruction Weighted Delaunay triangulation Restricted Delaunay triangulation Witness complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22(4), 481–504 (1999) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Amenta, N., Bern, M., Eppstein, D.: The crust and the β-skeleton: combinatorial curve reconstruction. Graph. Models Image Process. 60, 125–135 (1998) CrossRefGoogle Scholar
  3. 3.
    Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 12, 125–141 (2002) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Attali, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Alpha–beta witness complexes. In: Proc. 10th Workshop on Algorithms and Data Structures, pp. 386–397 (2007) Google Scholar
  5. 5.
    Attali, D., Edelsbrunner, H., Mileyko, Y.: Weak witnesses for Delaunay triangulations of submanifolds. In: Proc. ACM Sympos. on Solid and Physical Modeling, pp. 143–150 (2007) Google Scholar
  6. 6.
    Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Mach. Learn. 56(1–3), 209–239 (2004) MATHCrossRefGoogle Scholar
  7. 7.
    Boissonnat, J.-D., Oudot, S.: Provably good sampling and meshing of Lipschitz surfaces. In: Proc. 22nd Annu. Sympos. Comput. Geom., pp. 337–346 (2006) Google Scholar
  8. 8.
    Cazals, F., Giesen, J.: Delaunay triangulation based surface reconstruction. In: Boissonnat, J.D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces, pp. 231–273. Springer, Berlin (2006) CrossRefGoogle Scholar
  9. 9.
    Chazal, F., Lieutier, A.: Weak feature size and persistent homology: computing homology of solids in ℝn from noisy data samples. In: Proc. 21st Annual ACM Symposium on Computational Geometry, pp. 255–262 (2005) Google Scholar
  10. 10.
    Chazal, F., Lieutier, A.: Topology guaranteeing manifold reconstruction using distance function to noisy data. In: Proc. 22nd Annu. Sympos. on Comput. Geom., pp. 112–118 (2006) Google Scholar
  11. 11.
    Chazal, F., Oudot, S.Y.: Towards persistence-based reconstruction in Euclidean spaces. In: Proc. 24th ACM Sympos. Comput. Geom., pp. 232–241 (2008) Google Scholar
  12. 12.
    Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theory for compact sets in Euclidean space. In: Proc. 22nd Annu. Sympos. Comput. Geom., pp. 319–326 (2006) Google Scholar
  13. 13.
    Cheng, S.-W., Dey, T.K., Edelsbrunner, H., Facello, M.A., Teng, S.-H.: Sliver exudation. J. Assoc. Comput. Mach. 47(5), 883–904 (2000) MathSciNetGoogle Scholar
  14. 14.
    Cheng, S.-W., Dey, T.K., Ramos, E.A.: Manifold reconstruction from point samples. In: Proc. 16th Sympos. Discrete Algorithms, pp. 1018–1027 (2005) Google Scholar
  15. 15.
    Cheng, S.-W., Dey, T.K., Ramos, E.A.: Manifold reconstruction from point samples. Journal version of [14] Google Scholar
  16. 16.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: Proc. 21st ACM Sympos. Comput. Geom., pp. 263–271 (2005) Google Scholar
  17. 17.
    de Silva, V.: A weak characterisation of the Delaunay triangulation. Geom. Dedic. 135(1), 39–64 (2008) MATHCrossRefGoogle Scholar
  18. 18.
    de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Proc. Sympos. Point-Based Graphics, pp. 157–166 (2004) Google Scholar
  19. 19.
    DeMers, D., Cottrell, G.: Nonlinear dimensionality reduction. Adv. Neural Inf. Process. Syst. 5, 580–587 (1993) Google Scholar
  20. 20.
    Dey, T.K., Kumar, P.: A simple provable algorithm for curve reconstruction. In: Proc. 10th ACM–SIAM Sympos. Discrete Algorithms, pp. 893–894 (1999) Google Scholar
  21. 21.
    Dey, T.K., Giesen, J., Goswami, S., Zhao, W.: Shape dimension and approximation from samples. Discrete Comput. Geom. 29, 419–434 (2003) MATHMathSciNetGoogle Scholar
  22. 22.
    Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Science, vol. 10. Springer, Berlin (1987) MATHGoogle Scholar
  23. 23.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002) MATHMathSciNetGoogle Scholar
  24. 24.
    Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Gao, J., Guibas, L.J., Oudot, S.Y., Wang, Y.: Geodesic Delaunay triangulation and witness complex in the plane. In: Proc. 18th ACM–SIAM Sympos. on Discrete Algorithms, pp. 571–580 (2008) Google Scholar
  26. 26.
    Giesen, J., Wagner, U.: Shape dimension and intrinsic metric from samples of manifolds with high co-dimension. Discrete Comput. Geom. 32, 245–267 (2004) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Guibas, L.J., Oudot, S.Y.: Reconstruction using witness complexes. Discrete Comput. Geom. 40, 325–356 (2008) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Lee, A.B., Pederson, K.S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54(1–3), 83–103 (2003) MATHCrossRefGoogle Scholar
  29. 29.
    Li, X.-Y.: Generating well-shaped d-dimensional Delaunay meshes. Theor. Comput. Sci. 296(1), 145–165 (2003) MATHCrossRefGoogle Scholar
  30. 30.
    Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1–3), 419–441 (2008) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000) CrossRefGoogle Scholar
  32. 32.
    Seow, M.-J., Tompkins, R.C., Asari, V.K.: A new nonlinear dimensionality reduction technique for pose and lighting invariant face recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition—Workshops, p. 160 (2005) Google Scholar
  33. 33.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000) CrossRefGoogle Scholar
  34. 34.
    Vlachos, M., Domeniconi, C., Gunopulos, D., Kollios, G., Koudas, N.: Non-linear dimensionality reduction techniques for classification and visualization. In: Proc. 8th ACM SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining, pp. 645–651 (2002) Google Scholar
  35. 35.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jean-Daniel Boissonnat
    • 1
  • Leonidas J. Guibas
    • 2
  • Steve Y. Oudot
    • 2
  1. 1.INRIAGéométrica TeamSophia-AntipolisFrance
  2. 2.Dept. Computer ScienceStanford UniversityStanfordUSA

Personalised recommendations