Discrete & Computational Geometry

, Volume 42, Issue 3, pp 399–420 | Cite as

Markov Incremental Constructions

  • Bernard Chazelle
  • Wolfgang Mulzer


A classic result asserts that many geometric structures can be constructed optimally by successively inserting their constituent parts in random order. These randomized incremental constructions (RICs) still work with imperfect randomness: the dynamic operations need only be “locally” random. Much attention has been given recently to inputs generated by Markov sources. These are particularly interesting to study in the framework of RICs, because Markov chains provide highly nonlocal randomness, which incapacitates virtually all known RIC technology.

We generalize Mulmuley’s theory of Θ-series and prove that Markov incremental constructions with bounded spectral gap are optimal within polylog factors for trapezoidal maps, segment intersections, and convex hulls in any fixed dimension. The main contribution of this work is threefold: (i) extending the theory of abstract configuration spaces to the Markov setting; (ii) proving Clarkson–Shor-type bounds for this new model; (iii) applying the results to classical geometric problems. We hope that this work will pioneer a new approach to randomized analysis in computational geometry.


Randomized incremental constructions Expander graphs Clarkson–Shor bound 


  1. 1.
    Aldous, D., Steele, J.M.: Asymptotics for Euclidean minimal spanning trees on random points. Probab. Theory Relat. Fields 92(2), 247–258 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Amenta, N., Choi, S., Rote, G.: Incremental constructions con BRIO. In: SCG ’03: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 211–219. ACM, New York (2003) Google Scholar
  3. 3.
    Barnes, G., Feige, U.: Short random walks on graphs. SIAM J. Discrete Math. 9(1), 19–28 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (2000) zbMATHGoogle Scholar
  5. 5.
    Boissonnat, J.D., Devillers, O., Schott, R., Teillaud, M., Yvinec, M.: Applications of random sampling to on-line algorithms in computational geometry. Discrete Comput. Geom. 8(1), 51–71 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Boissonnat, J.D., Teillaud, M.: The hierarchical representation of objects: the Delaunay tree. In: SCG ’86: Proceedings of the Second Annual Symposium on Computational Geometry, pp. 260–268. ACM, New York (1986) CrossRefGoogle Scholar
  7. 7.
    Boissonnat, J.D., Teillaud, M.: On the randomized construction of the Delaunay tree. Theor. Comput. Sci. 112(2), 339–354 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, New York (1998) zbMATHGoogle Scholar
  9. 9.
    Broder, A.Z., Karlin, A.R.: Bounds on the cover time. J. Theor. Probab. 2(1), 101–120 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chassaing, P.: Optimality of move-to-front for self-organizing data structures with locality of references. Ann. Appl. Probab. 3(4), 1219–1240 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cheong, O., Mulmuley, K., Ramos, E.A.: Randomization and derandomization. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of discrete and computational geometry, 2nd edn., pp. 895–926. CRC Press, Boca Raton (2004) Google Scholar
  12. 12.
    Chew, L.P.: Building Voronoi diagrams for convex polygons in linear expected time. Tech. Rep. PCS-TR90-147, Dartmouth College, Hanover, NH, USA (1990) Google Scholar
  13. 13.
    Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92. American Mathematical Society, Providence (1997) zbMATHGoogle Scholar
  14. 14.
    Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental constructions. Comput. Geom. 3(4), 185–212 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4(5), 387–421 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Devillers, O.: The Delaunay hierarchy. Int. J. Found. Comput. Sci. 13, 163–180 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Devillers, O., Guigue, P.: The shuffling buffer. Int. J. Comput. Geom. Appl. 11(5), 555–572 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Devillers, O., Meiser, S., Teillaud, M.: Fully dynamic Delaunay triangulation in logarithmic expected time per operation. Comput. Geom. 2(2), 55–80 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dobrindt, K., Yvinec, M.: Remembering conflicts in history yields dynamic algorithms. In: Algorithms and computation, Hong Kong, 1993. Lecture Notes in Comput. Sci., vol. 762, pp. 21–30. Springer, Berlin (1993) Google Scholar
  20. 20.
    Eppstein, D., Paterson, M.S., Yao, F.F.: On nearest-neighbor graphs. Discrete Comput. Geom. 17(3), 263–282 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Fox, D., Burgard, W., Thrun, S.: Markov localization for reliable robot navigation and people detection. In: Selected Papers from the International Workshop on Sensor Based Intelligent Robots, pp. 1–20. Springer, London (1999) CrossRefGoogle Scholar
  22. 22.
    Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7(4), 381–413 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990) zbMATHGoogle Scholar
  24. 24.
    Hotz, G.: Search trees and search graphs for Markov sources. Elektron. Informationsverarbeitung Kybern. 29(5), 283–292 (1993) zbMATHGoogle Scholar
  25. 25.
    Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. Peters, Natick (2001) zbMATHGoogle Scholar
  26. 26.
    Kapoor, S., Reingold, E.M.: Stochastic rearrangement rules for self-organizing data structures. Algorithmica 6(2), 278–291 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM J. Comput. 30(3), 906–922 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Konneker, L.K., Varol, Y.L.: A note on heuristics for dynamic organization of data structures. Inf. Process. Lett. 12(5), 213–216 (1981) CrossRefGoogle Scholar
  29. 29.
    Lam, K., Leung, M.Y., Siu, M.K.: Self-organizing files with dependent accesses. J. Appl. Probab. 21(2), 343–359 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Lu, P., Zeng, X., Huang, X., Wang, Y.: Navigation in 3D game by Markov model based head pose estimating. In: ICIG ’04: Proceedings of the Third International Conference on Image and Graphics, pp. 493–496. IEEE Computer Society, Washington (2004) Google Scholar
  31. 31.
    Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16(4–5), 498–516 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Mehlhorn, K., Sharir, M., Welzl, E.: Tail estimates for the efficiency of randomized incremental algorithms for line segment intersection. Comput. Geom. 3, 235–246 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995) zbMATHGoogle Scholar
  34. 34.
    Mulmuley, K.: A fast planar partition algorithm, I. J. Symb. Comput. 10(3–4), 253–280 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Mulmuley, K.: A fast planar partition algorithm, II. J. ACM 38(1), 74–103 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Mulmuley, K.: Computational Geometry: An Introduction through Randomized Algorithms. Prentice-Hall, Englewood Cliffs (1994) Google Scholar
  37. 37.
    Mulmuley, K.: Randomized geometric algorithms and pseudorandom generators. Algorithmica 16(4–5), 450–463 (1996) zbMATHMathSciNetGoogle Scholar
  38. 38.
    Phatarfod, R.M., Pryde, A.J., Dyte, D.: On the move-to-front scheme with Markov dependent requests. J. Appl. Probab. 34(3), 790–794 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Schulz, F., Schömer, E.: Self-organizing data structures with dependent accesses. In: ICALP, pp. 526–537 (1996) Google Scholar
  40. 40.
    Schwarzkopf, O.: Dynamic maintenance of geometric structures made easy. In: Proceedings of the 32nd annual symposium on Foundations of Computer Science, pp. 197–206. IEEE Computer Society Press, Los Alamitos (1991) CrossRefGoogle Scholar
  41. 41.
    Seidel, R.: A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. 1, 51–64 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Seidel, R.: Small-dimensional linear programming and convex hulls made easy. Discrete Comput. Geom. 6(5), 423–434 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Seidel, R.: Backwards analysis of randomized geometric algorithms. In: New Trends in Discrete and Computational Geometry. Algorithms Combin., vol. 10, pp. 37–67. Springer, Berlin (1993) Google Scholar
  44. 44.
    Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16(4–5), 464–497 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Shedler, G.S., Tung, C.: Locality in page reference strings. SIAM J. Comput. 1(3), 218–241 (1972) zbMATHCrossRefGoogle Scholar
  46. 46.
    Veach, E., Guibas, L.J.: Metropolis light transport. In: SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 65–76. ACM/Addison-Wesley, New York (1997) CrossRefGoogle Scholar
  47. 47.
    Wellington, C., Courville, A., Stentz, A.T.: A generative model of terrain for autonomous navigation in vegetation. Int. J. Rob. Res. 25(12), 1287–1304 (2006) CrossRefGoogle Scholar
  48. 48.
    Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: New Results and New Trends in Computer Science, Graz, 1991. Lecture Notes in Comput. Sci., vol. 555, pp. 359–370. Springer, Berlin (1991) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations