Discrete & Computational Geometry

, Volume 42, Issue 3, pp 489–516 | Cite as

Schnyder Woods for Higher Genus Triangulated Surfaces, with Applications to Encoding

  • Luca Castelli Aleardi
  • Éric Fusy
  • Thomas Lewiner


Schnyder woods are a well-known combinatorial structure for plane triangulations, which yields a decomposition into three spanning trees. We extend here definitions and algorithms for Schnyder woods to closed orientable surfaces of arbitrary genus. In particular, we describe a method to traverse a triangulation of genus g and compute a so-called g-Schnyder wood on the way. As an application, we give a procedure to encode a triangulation of genus g and n vertices in 4n+O(glog (n)) bits. This matches the worst-case encoding rate of Edgebreaker in positive genus. All the algorithms presented here have execution time O((n+g)g) and hence are linear when the genus is fixed.


Schnyder woods Triangulations Higher genus surfaces Graph encoding 


  1. 1.
    Barbay, J., Castelli-Aleardi, L., He, M., Munro, J.I.: Succinct representation of labeled graphs. In: ISAAC, pp. 316–328 (2007) Google Scholar
  2. 2.
    Bernardi, O., Bonichon, N.: Intervals in Catalan lattices and realizers of triangulations. J. Comb. Theory, Ser. A 116(1), 55–75 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bonichon, N.: Aspects algorithmiques et combinatoires des réaliseurs des graphes plans maximaux. PhD thesis, Bordeaux I (2002) Google Scholar
  4. 4.
    Bonichon, N., Gavoille, C., Hanusse, N.: An information-theoretic upper bound of planar graphs using triangulation. In: STACS, pp. 499–510. Springer, Berlin (2003) Google Scholar
  5. 5.
    Bonichon, N., Gavoille, C., Labourel, A.: Edge partition of toroidal graphs into forests in linear time. In: ICGT, vol. 22, pp. 421–425 (2005) Google Scholar
  6. 6.
    Bonichon, N., Gavoille, C., Hanusse, N., Poulalhon, D., Schaeffer, G.: Planar graphs, via well-orderly maps and trees. Graphs Comb. 22(2), 185–202 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brehm, E.: 3-orientations and Schnyder-three tree decompositions. Master’s thesis, Freie Universität Berlin (2000) Google Scholar
  8. 8.
    Cabello, S., Mohar, B.: Finding shortest non-separating and non-contractible cycles for topologically embedded graphs. Discrete Comput. Geom. 37(2), 213–235 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Castelli-Aleardi, L., Devillers, O., Schaeffer, G.: Succinct representation of triangulations with a boundary. In: WADS, pp. 134–145. Springer, Berlin (2005) Google Scholar
  10. 10.
    Castelli-Aleardi, L., Devillers, O., Schaeffer, G.: Succinct representations of planar maps. Theor. Comput. Sci. 408, 174–187 (2008) (Preliminary version in SoCG’06) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chapuy, G.: Asymptotic enumeration of constellations and related families of maps on orientable surfaces. arXiv:0805.0352 (2008)
  12. 12.
    Chapuy, G., Marcus, M., Schaeffer, G.: A bijection for rooted maps on orientable surfaces. arXiv:0712.3649 (2007)
  13. 13.
    Chiang, Y.-T., Lin, C.-C., Lu, H.-I.: Orderly spanning trees with applications to graph encoding and graph drawing. In: SODA, pp. 506–515 (2001) Google Scholar
  14. 14.
    Chuang, R.C.-N., Garg, A., He, X., Kao, M.-Y., Lu, H.-I.: Compact encodings of planar graphs via canonical orderings and multiple parentheses. In: ICALP, pp. 118–129 (1998) Google Scholar
  15. 15.
    de Fraysseix, H., de Mendez, P.O.: On topological aspects of orientations. Discrete Math. 229, 57–72 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    de Mendez, P.O.: Orientations bipolaires. PhD thesis, Paris (1994) Google Scholar
  17. 17.
    de Verdière, E.C., Lazarus, F.: Optimal system of loops on an orientable surface. Discrete Comput. Geom. 33(3), 507–534 (2005). (Preliminary version in FOCS’02) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. Discrete Comput. Geom. 31(1), 37–59 (2004) zbMATHMathSciNetGoogle Scholar
  19. 19.
    Felsner, S.: Convex drawings of planar graphs and the order dimension of 3-polytopes. Order 18, 19–37 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Felsner, S.: Lattice structures from planar graphs. Electron. J. Comb. 11(15), 24 (2004) MathSciNetGoogle Scholar
  21. 21.
    Fusy, É.: Combinatoire des cartes planaires et applications algorithmiques. PhD thesis, Ecole Polytechnique (2007) Google Scholar
  22. 22.
    Fusy, É., Poulalhon, D., Schaeffer, G.: Dissections, orientations, and trees with applications to optimal mesh encoding and random sampling. ACM Trans. Algorithms 4(2) (2008). (Preliminary version in SODA’05) Google Scholar
  23. 23.
    Gao, Z.: A pattern for the asymptotic number of rooted maps on surfaces. J. Comb. Theory, Ser. A 64, 246–264 (1993) zbMATHCrossRefGoogle Scholar
  24. 24.
    He, X., Kao, M.-Y., Lu, H.-I.: Linear-time succinct encodings of planar graphs via canonical orderings. SIAM J. Discrete Math. 12, 317–325 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Keeler, K., Westbrook, J.: Short encodings of planar graph and maps. Discrete Appl. Math. 58, 239–252 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Kutz, M.: Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time. In: SoCG, pp. 430–438 (2006) Google Scholar
  28. 28.
    Lazarus, F., Pocchiola, M., Vegter, G., Verroust, A.: Computing a canonical polygonal schema of an orientable triangulated surface. In: SoCG, pp. 80–89 (2001) Google Scholar
  29. 29.
    Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26(3), 221–233 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Lewiner, T., Lopes, H., Rossignac, J., Vieira, A.W.: Efficient edgebreaker for surfaces of arbitrary topology. In: Sibgrapi, pp. 218–225 (2004) Google Scholar
  31. 31.
    Lopes, H., Rossignac, J., Safonova, A., Szymczak, A., Tavares, G.: Edgebreaker: a simple implementation for surfaces with handles. Comput. Graph. 27(4), 553–567 (2003) CrossRefGoogle Scholar
  32. 32.
    Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins, Baltimore (2001) zbMATHGoogle Scholar
  33. 33.
    Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. Algorithmica 46, 505–527 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. Trans. Vis. Comput. Graph. 5, 47–61 (1999) CrossRefGoogle Scholar
  35. 35.
    Schaeffer, G.: Conjugaison d’arbres et cartes combinatoires aléatoires. PhD thesis, Bordeaux I (1999) Google Scholar
  36. 36.
    Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Schnyder, W.: Embedding planar graphs on the grid. In: SODA, pp. 138–148 (1990) Google Scholar
  38. 38.
    Tarjan, R.E.: Depth first search and linear graphs algorithms. SIAM J. Comput. 1, 146–160 (1972) zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Tarjan, R.E.: A note on finding the bridges of a graph. Inf. Process. Lett. 2, 160–161 (1974) zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Turan, G.: On the succinct representation of graphs. Discrete Appl. Math. 8, 289–294 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Tutte, W.: A census of planar maps. Can. J. Math. 15, 249–271 (1963) zbMATHMathSciNetGoogle Scholar
  42. 42.
    Vegter, G., Yap, C.-K.: Computational complexity of combinatorial surfaces. In: SoCG, pp. 102–111 (1990) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Luca Castelli Aleardi
    • 1
  • Éric Fusy
    • 1
    • 2
  • Thomas Lewiner
    • 3
  1. 1.École PolytechniqueParisFrance
  2. 2.University of British ColumbiaVancouverCanada
  3. 3.Department of MathematicsPUC-RioRio de JaneiroBrazil

Personalised recommendations