Discrete & Computational Geometry

, Volume 42, Issue 3, pp 469–488 | Cite as

Dynamic Coresets

  • Timothy M. Chan


We give a dynamic data structure that can maintain an ε-coreset of n points, with respect to the extent measure, in O(log n) time per update for any constant ε>0 and any constant dimension. The previous method by Agarwal, Har-Peled, and Varadarajan requires polylogarithmic update time. For points with integer coordinates bounded by U, we alternatively get O(log log U) time. Numerous applications follow, for example, on dynamically approximating the width, smallest enclosing cylinder, minimum bounding box, or minimum-width annulus. We can also use the same approach to maintain approximate k-centers in time O(log n) (or O(log log U) if the spread is bounded by U) for any constant k and any constant dimension.

For the smallest enclosing cylinder problem, we also show that a constant-factor approximation can be maintained in O(1) randomized amortized time on the word RAM.


Approximation algorithms Dynamic data structures Randomization Geometric optimization Width k-Center Word RAM 


  1. 1.
    Agarwal, P.K., Aronov, B., Sharir, M.: Line transversals of balls and smallest enclosing cylinders in three dimensions. Discrete Comput. Geom. 21, 373–388 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. J. ACM 51, 606–635 (2004) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Current Trends in Combinatorial and Computational Geometry, pp. 1–30. Cambridge University Press, New York (2007) Google Scholar
  4. 4.
    Agarwal, P.K., Har-Peled, S., Yu, H.: Robust shape fitting via peeling and grating coresets. Discrete Comput. Geom. 29, 38–58 (2008) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Agarwal, P.K., Matoušek, J.: Dynamic half-space range reporting and its applications. Algorithmica 13, 325–345 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Agarwal, P.K., Procopiuc, C.M.: Approximation algorithms for projective clustering. J. Algorithms 46, 115–139 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Agarwal, P.K., Sharir, M.: Off-line dynamic maintenance of the width of a planar point set. Comput. Geom. Theory Appl. 1, 65–78 (1991) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Agarwal, P.K., Sharir, M.: Efficient randomized algorithms for some geometric optimization problems. Discrete Comput. Geom. 16, 317–337 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Agarwal, P.K., Yu, H.: A space-optimal data-stream algorithm for coresets in the plane. In: Proc. 23rd ACM Sympos. Comput. Geom., pp. 1–10 (2007) Google Scholar
  10. 10.
    Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. In: Proc. 14th ACM-SIAM Sympos. Discrete Algorithms, pp. 801–802 (2003) Google Scholar
  11. 11.
    Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proc. 34th ACM Sympos. Theory Comput., pp. 250–257 (2002) Google Scholar
  12. 12.
    Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms 38, 91–109 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bentley, J., Saxe, J.: Decomposable searching problems I: static-to-dynamic transformation. J. Algorithms 1, 301–358 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proc. 43rd IEEE Sympos. Found. Comput. Sci., pp. 617–626 (2002) Google Scholar
  15. 15.
    Chan, T.M.: Dynamic planar convex hull operations in near-logarithmic amortized time. J. ACM, 48, 1–12 (2001) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Chan, T.M.: Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Int. J. Comput. Geom. Appl. 12, 67–85 (2002) zbMATHCrossRefGoogle Scholar
  17. 17.
    Chan, T.M.: A fully dynamic algorithm for planar width. Discrete Comput. Geom. 30, 17–24 (2003) zbMATHMathSciNetGoogle Scholar
  18. 18.
    Chan, T.M.: Semi-online maintenance of geometric optima and measures. SIAM J. Comput. 32, 700–716 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chan, T.M.: A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries. In: Proc. 17th ACM-SIAM Sympos. Discrete Algorithms, pp. 1196–1202 (2006) Google Scholar
  20. 20.
    Chan, T.M.: Faster core-set constructions and data stream algorithms in fixed dimensions. Comput. Geom. Theory Appl. 35, 20–35 (2006) zbMATHGoogle Scholar
  21. 21.
    Chan, T.M.: Well-separated pair decomposition in linear time? Inf. Process. Lett. 107, 138–141 (2008) CrossRefGoogle Scholar
  22. 22.
    Chan, T.M., Pǎtraşcu, M.: Transdichotomous results in computational geometry, I: Point location in sublogarithmic time. SIAM J. Comput. (to appear). Preliminary versions in Proc. 47th IEEE Sympos. Found. Comput. Sci., pp. 325–332, 333–342 (2006) Google Scholar
  23. 23.
    Chan, T.M., Pǎtraşcu, M.: Transdichotomous results in computational geometry, II: Offline search. In: Proc. 39th ACM Sympos. Theory Comput., pp. 31–39 (2007) Google Scholar
  24. 24.
    Chan, T.M., Sadjad, B.S.: Geometric optimization problems over sliding windows. Int. J. Comput. Geom. Appl. 16, 145–157 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Chazelle, B.: On the convex layers of a planar set. IEEE Trans. Inf. Theory IT-31, 509–517 (1985) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Clarkson, K.L., Eppstein, D., Miller, G.L., Sturtivant, C., Teng, S.-H.: Approximating center points with iterative Radon points. Int. J. Comput. Geom. Appl. 6, 357–377 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Duncan, C.A., Goodrich, M.T., Ramos, E.A.: Efficient approximation and optimization algorithms for computational metrology. In: Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pp. 121–130 (1997) Google Scholar
  28. 28.
    Edwards, M., Varadarajan, K.R.: No coreset, no cry: II. In: Proc. 25th Int. Conf. Found. Soft. Tech. Theoret. Comput. Sci. Lect. Notes Comput. Sci., vol. 3821. Springer, Berlin, pp. 107–115 (2005) CrossRefGoogle Scholar
  29. 29.
    Feigenbaum, J., Kannan, S., Zhang, J.: Computing diameter in the streaming and sliding-window models. Algorithmica 41, 25–41 (2004) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Frahling, G., Indyk, P., Sohler, C.: Sampling in dynamic data streams and applications. Int. J. Comput. Geom. Appl. 18, 3–28 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Frahling, G., Sohler, C.: Coresets in dynamic geometric data streams. In: Proc. 37th ACM Sympos. Theory Comput., pp. 209–217 (2005) Google Scholar
  32. 32.
    Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985) zbMATHCrossRefGoogle Scholar
  33. 33.
    Har-Peled, S.: Clustering motion. Discrete Comput. Geom. 31, 545–565 (2004) zbMATHMathSciNetGoogle Scholar
  34. 34.
    Har-Peled, S.: No coreset, no cry. In: Proc. 24th Int. Conf. Found. Soft. Tech. Theoret. Comput. Sci. Lect. Notes Comput. Sci., vol. 3328. Springer, Berlin, pp. 324–335 (2004) Google Scholar
  35. 35.
    Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering. Discrete Comput. Geom. 37, 3–19 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Har-Peled, S., Mazumdar, S.: Coresets for k-means and k-median clustering and their applications. In: Proc. 36th ACM Sympos. Theory. Comput., pp. 291–300 (2004) Google Scholar
  37. 37.
    Har-Peled, S., Varadarajan, K.R.: Projective clustering in high dimensions using core-sets. In: Proc. 18th ACM Sympos. Comput. Geom., pp. 312–318 (2002) Google Scholar
  38. 38.
    Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM J. Comput. 33, 269–285 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Indyk, P.: Algorithms for dynamic geometric problems over data streams. In: Proc. 36th ACM Sympos. Theory Comput., pp. 373–380 (2004) Google Scholar
  40. 40.
    Janardan, R.: On maintaining the width and diameter of a planar point-set online. Int. J. Comput. Geom. Appl. 3, 331–344 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Matias, Y., Vitter, J.S., Young, N.E.: Approximate data structures with applications. In: Proc 5th ACM-SIAM Sympos. Discrete Algorithm, pp. 187–194 (1994) Google Scholar
  42. 42.
    Matoušek, J.: Derandomization in computational geometry. In: Urrutia, J., Sack, J. (eds.) Handbook of Computational Geometry. North-Holland, Amsterdam, pp. 559–595 (2000) CrossRefGoogle Scholar
  43. 43.
    Overmars, M.H.: The Design of Dynamic Data Structures. Lect. Notes in Comput. Sci., vol. 156. Springer, Berlin (1983) Google Scholar
  44. 44.
    Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J. Comput. Sys. Sci. 23, 166–204 (1981) zbMATHCrossRefGoogle Scholar
  45. 45.
    Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley-Interscience, New York (1995) zbMATHGoogle Scholar
  46. 46.
    Rote, G., Schwarz, C., Snoeyink, J.: Maintaining the approximate width of a set of points in the plane, In: Proc. 5th Canad. Conf. Comput. Geom., pp. 258–263 (1993) Google Scholar
  47. 47.
    Thorup, M.: Equivalence between priority queues and sorting. J. ACM 54, 6 (2007) CrossRefMathSciNetGoogle Scholar
  48. 48.
    van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Inf. Process. Lett. 6, 80–82 (1977) zbMATHCrossRefGoogle Scholar
  49. 49.
    Yu, H., Agarwal, P.K., Poreddy, R., Varadarajan, K.R.: Practical methods for shape fitting and kinetic data structures using core sets. Algorithmica 52, 378–402 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Zarrabi-Zadeh, H.: An almost space-optimal streaming algorithm for coresets in fixed dimensions. In: Proc. 16th European Sympos. Algorithms. Lect. Notes in Comput. Sci., vol. 5193. Springer, Berlin, pp. 817–829 (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations