Discrete & Computational Geometry

, Volume 43, Issue 2, pp 221–241 | Cite as

Cuttings for Disks and Axis-Aligned Rectangles in Three-Space

  • Eynat Rafalin
  • Diane L. Souvaine
  • Csaba D. Tóth
Article
  • 58 Downloads

Abstract

We present new asymptotically tight bounds on cuttings, a fundamental data structure in computational geometry. For n objects in space and a parameter r∈ℕ, a \(\frac{1}{r}\) -cutting is a covering of the space with simplices such that the interior of each simplex intersects at most n/r objects. For n pairwise disjoint disks in ℝ3 and a parameter r∈ℕ, we construct a \(\frac{1}{r}\) -cutting of size O(r 2). For n axis-aligned rectangles in ℝ3, we construct a \(\frac{1}{r}\) -cutting of size O(r 3/2).

As an application related to multi-point location in three-space, we present tight bounds on the cost of spanning trees across barriers. Given n points and a finite set of disjoint disk barriers in ℝ3, the points can be connected with a straight line spanning tree such that every disk is stabbed by at most \(O(\sqrt{n})\) edges of the tree. If the barriers are axis-aligned rectangles, then there is a straight line spanning tree such that every rectangle is stabbed by O(n 1/3) edges. Both bounds are best possible.

Keywords

Simplicial partition Binary space partition Spanning tree 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K.: Partitioning arrangements of lines I: an efficient deterministic algorithm. Discrete Comput. Geom. 5, 449–483 (1990) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Grove, E.F., Murali, T.M., Vitter, J.S.: Binary space partitions for fat rectangles. SIAM J. Comput. 29(5), 1422–1448 (2000) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Asano, T., de Berg, M., Cheong, O., Guibas, L.J., Snoeyink, J., Tamaki, H.: Spanning trees crossing few barriers. Discrete Comput. Geom. 30(4), 591–606 (2003) MATHMathSciNetGoogle Scholar
  4. 4.
    de Berg, M., Guibas, L.J., Halperin, D.: Vertical decompositions for triangles in 3-space. Discrete Comput. Geom. 15(1), 35–61 (1996) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boissonnat, J.-D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  6. 6.
    Camerini, P.M.: The min-max spanning tree problem and some extensions. Inf. Process. Lett. 7(1), 10–14 (1978) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom. 9, 145–158 (1993) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chazelle, B.: Cuttings. In: Handbook of Data Structures and Applications, pp. 501–511. CRC Press, Boca Raton (2005) Google Scholar
  9. 9.
    Chazelle, B.: The Discrepancy Method. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  10. 10.
    Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: A singly-exponential stratification scheme for real semi-algebraic varieties. Theor. Comput. Sci. 84, 77–105 (1991) MATHCrossRefGoogle Scholar
  11. 11.
    Chazelle, B., Friedman, J.: A deterministic view of random sampling and its use in geometry. Combinatorica 10(3), 229–249 (1990) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chazelle, B., Welzl, E.: Quasi-optimal range searching in spaces of finite VC-dimension. Discrete Comput. Geom. 4(5), 467–489 (1989) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Clarkson, K.L., Shor, P.W.: Application of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dumitrescu, A., Mitchell, J.S.B., Sharir, M.: Binary space partitions for axis-parallel segments, rectangles, and hyperrectangles. Discrete Comput. Geom. 31(2), 207–227 (2004) MATHMathSciNetGoogle Scholar
  15. 15.
    Ezra, E., Sharir, M.: Counting and representing intersections among triangles in three dimensions. Comput. Geom. Theory Appl. 32(3), 196–215 (2005) MATHMathSciNetGoogle Scholar
  16. 16.
    Haussler, D., Welzl, E.: ε-nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hoffmann, M., Tóth, Cs.D.: Connecting points in the presence of obstacles in the plane. In: Proc. 14th Canadian Conference on Comput. Geom., Lethbridge, AB, pp. 63–67 (2002) Google Scholar
  18. 18.
    Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to find minimum spanning trees. J. ACM 42, 321–328 (1995) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Koltun, V.: Almost tight upper bounds for vertical decompositions in four dimensions. J. ACM 51(5), 699–730 (2004) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Koltun, V.: Sharp bounds for vertical decompositions of linear arrangements in four dimensions. Discrete Comput. Geom. 31(3), 435–460 (2004) MATHMathSciNetGoogle Scholar
  21. 21.
    Koltun, V., Sharir, M.: Curve-sensitive cuttings. SIAM J. Comput. 34(4), 863–878 (2005) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Matoušek, J.: Cutting hyperplane arrangements. Discrete Comput. Geom. 6, 385–406 (1991) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Matoušek, J.: Derandomization in computational geometry. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 559–595. North-Holland, Amsterdam (2000) CrossRefGoogle Scholar
  24. 24.
    Matoušek, J.: Lectures on Discrete Geometry. Springer, Berlin (2002) MATHGoogle Scholar
  25. 25.
    Mulmuley, K.: Hidden surface removal with respect to a moving view point. In: Proc. Symp. Theory of Computing, pp. 512–522. ACM Press, New York (1991) Google Scholar
  26. 26.
    Pach, J., Sharir, M.: Geometric incidences. In: Towards a Theory of Geometric Graphs. Contemp. Math., vol. 342, pp. 185–223. AMS, Providence (2004) Google Scholar
  27. 27.
    Paterson, M., Yao, F.F.: Efficient binary space partitions for hidden-surface removal and solid modeling. Discrete Comput. Geom. 5, 485–503 (1990) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Paterson, M., Yao, F.F.: Optimal binary space partitions for orthogonal objects. J. Algorithms 13(1), 99–113 (1992) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Pellegrini, M.: On point location and motion planning among simplices. SIAM J. Comput. 25(5), 1061–1081 (1996) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Pellegrini, M.: On counting pairs of intersecting segments and off-line triangle range searching. Algorithmica 17(4), 380–398 (1997) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Commun. ACM 29(7), 669–679 (1986) CrossRefMathSciNetGoogle Scholar
  32. 32.
    Sharir, M.: The Clarkson–Shor technique revisited and extended. Comb. Probab. Comput. 12(2), 191–201 (2003) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Tóth, Cs.D.: Binary space partition for orthogonal fat rectangles. In: Proc. 11th European Symp. Algorithms. LNCS, vol. 2832, pp. 494–505. Springer, Berlin (2003). Google Scholar
  34. 34.
    Zomorodian, A.J.: Topology for Computing. Cambridge Monographs on Applied and Computational Mathematics, vol. 16. Cambridge University Press, Cambridge (2005) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Eynat Rafalin
    • 1
  • Diane L. Souvaine
    • 2
  • Csaba D. Tóth
    • 3
  1. 1.Google Inc.Mountain ViewUSA
  2. 2.Department of Computer ScienceTufts UniversityMedfordUSA
  3. 3.Department of MathematicsUniversity of CalgaryCalgaryCanada

Personalised recommendations