Discrete & Computational Geometry

, Volume 43, Issue 2, pp 402–411 | Cite as

Untangling Polygons and Graphs



Untangling is a process in which some vertices in a drawing of a planar graph are moved to obtain a straight-line plane drawing. The aim is to move as few vertices as possible. We present an algorithm that untangles the cycle graph C n while keeping Ω(n 2/3) vertices fixed.

For any connected graph G, we also present an upper bound on the number of fixed vertices in the worst case. The bound is a function of the number of vertices, maximum degree, and diameter of G. One consequence is that every 3-connected planar graph has a drawing δ such that at most O((nlog n)2/3) vertices are fixed in every untangling of δ.


Graph drawing Planarity Straight-line drawing Untangling Polygons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnette, D.: Trees in polyhedral graphs. Can. J. Math. 18, 731–736 (1966) MATHMathSciNetGoogle Scholar
  2. 2.
    Bose, P., Dujmović, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.: A polynomial bound for untangling geometric planar graphs. Discrete Comput. Geom. (2008). doi: 10.1007/s00454-008-9125-3 Google Scholar
  3. 3.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935) Google Scholar
  4. 4.
    Fáry, I.: On straight line representation of planar graphs. Acta Univ. Szeged, Acta Sci. Math. 11, 229–233 (1948) Google Scholar
  5. 5.
    Goaoc, X., Kratochvíl, J., Okamoto, Y., Shin, C.-S., Spillner, A., Wolff, A.: Untangling a planar graph. Discrete Comput. Geom. (2009) doi: 10.1007/s00454-008-9130-6 Google Scholar
  6. 6.
    Kang, M., Pikhurko, O., Ravsky, A., Schacht, M., Verbitsky, O.: Obfuscated drawings of planar graphs. 0803.0858
  7. 7.
    Pach, J., Tardos, G.: Untangling a polygon. Discrete Comput. Geom. 28(4), 585–592 (2002) MATHMathSciNetGoogle Scholar
  8. 8.
    Ravsky, A., Verbitsky, O.: On collinear sets in straight line drawings. 0806.0253
  9. 9.
    Stein, S.K.: Convex maps. Proc. Am. Math. Soc. 2, 464–466 (1951) MATHCrossRefGoogle Scholar
  10. 10.
    Verbitsky, O.: On the obfuscation complexity of planar graphs. Theor. Comput. Sci. 396(1–3), 294–300 (2008) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresber. Deutsch. Math. Verein. 46, 26–32 (1936) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Applied MathematicsCharles UniversityPragueCzech Republic

Personalised recommendations