Advertisement

Discrete & Computational Geometry

, Volume 41, Issue 3, pp 444–460 | Cite as

Refolding Planar Polygons

  • Hayley N. Iben
  • James F. O’Brien
  • Erik D. Demaine
Open Access
Article

Abstract

This paper describes an algorithm for generating a guaranteed intersection-free interpolation sequence between any pair of compatible polygons. Our algorithm builds on prior results from linkage unfolding, and if desired it can ensure that every edge length changes monotonically over the course of the interpolation sequence. The computational machinery that ensures against self-intersection is independent from a distance metric that determines the overall character of the interpolation sequence. This decoupled approach provides a powerful control mechanism for determining how the interpolation should appear, while still assuring against intersection and guaranteeing termination of the algorithm. Our algorithm also allows additional control by accommodating a set of algebraic constraints that can be weakly enforced throughout the interpolation sequence.

Keywords

Polygon interpolation Morphing Shape transformation Refolding 

References

  1. 1.
    Aichholzer, O., Demaine, E.D., Erickson, J., Hurtado, F., Overmars, M., Soss, M.A., Toussaint, G.T.: Reconfiguring convex polygons. Comput. Geom., Theory Appl. 20(1–2), 85–95 (2001) zbMATHMathSciNetGoogle Scholar
  2. 2.
    Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proceedings of ACM SIGGRAPH 2000, pp. 157–164 (July 2000) Google Scholar
  3. 3.
    Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989) zbMATHGoogle Scholar
  4. 4.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cantarella, J.H., Demaine, E.D., Iben, H.N., O’Brien, J.F.: An energy-driven approach to linkage unfolding. In: Proceedings of the 20th Annual Symposium on Computational Geometry, pp. 134–143 (June 2004) Google Scholar
  6. 6.
    Carmel, E., Cohen-Or, D.: Warp-guided object-space morphing. Vis. Comput. 13, 465–478 (1997) CrossRefGoogle Scholar
  7. 7.
    Cohen-Or, D., Solomovic, A., Levin, D.: Three-dimensional distance field metamorphosis. ACM Trans. Graph. 17(2), 116–141 (1998) CrossRefGoogle Scholar
  8. 8.
    Connelly, R., Demaine, E.D., Rote, G.: Straightening polygonal arcs and convexifying polygonal cycles. Discrete Comput. Geom. 30(2), 205–239 (2003) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Englewood Cliffs (1996) zbMATHGoogle Scholar
  10. 10.
    Efrat, A., Har-Peled, S., Guibas, L.J., Murali, T.M.: Morphing between polylines. In: Proceedings of the Twelfth ACM-SIAM Symposium on Discrete Algorithms, pp. 680–689 (2001) Google Scholar
  11. 11.
    Goldstein, E., Gotsman, C.: Polygon morphing using a multiresolution representation. In: Proceedings of Graphics Interface, pp. 247–254 (1995) Google Scholar
  12. 12.
    Gotsman, C., Surazhsky, V.: Guaranteed intersection-free polygon morphing. Comput. Graph. 25(1), 67–75 (2001) CrossRefGoogle Scholar
  13. 13.
    Guibas, L., Hershberger, J.: Morphing simple polygons. In: Proceedings of the 10th Annual Symposium on Computational Geometry, pp. 267–276 (1994) Google Scholar
  14. 14.
    He, T., Wang, S., Kaufman, A.: Wavelet-based volume morphing. In Bergeron, D., Kaufman, A. (eds.) Proceedings of Visualization ’94, pp. 85–92 (1994) Google Scholar
  15. 15.
    Hughes, J.F.: Scheduled Fourier volume morphing. In: Proceedings of ACM SIGGRAPH 1992, pp. 43–46 (1992) Google Scholar
  16. 16.
    Kaul, A., Rossignac, J.: Solid-interpolating deformations: Construction and animation of PIPs. In: Proceedings of Eurographics ’91, pp. 493–505 (1991) Google Scholar
  17. 17.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1994) Google Scholar
  18. 18.
    Sederberg, T.W., Greenwood, E.: A physically based approach to 2-d shape blending. In: Proceedings of ACM SIGGRAPH 1992, pp. 25–34 (July 1992) Google Scholar
  19. 19.
    Sederberg, T.W., Gao, P., Wang, G., Mu, H.: 2-d shape blending: an intrinsic solution to the vertex path problem. In: Proceedings of ACM SIGGRAPH 1993, pp. 15–18 (August 1993) Google Scholar
  20. 20.
    Shapira, M., Rappoport, A.: Shape blending using the star-skeleton representation. IEEE Comput. Graph. Appl. 15, 44–50 (1995) CrossRefGoogle Scholar
  21. 21.
    Streinu, I.: A combinatorial approach to planar non-colliding robot arm motion planning. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, California, pp. 443–453 (November 2000) Google Scholar
  22. 22.
    Surazhsky, V., Gotsman, C.: Controllable morphing of compatible planar triangulations. ACM Trans. Graph. 20(4), 203–231 (2001) CrossRefGoogle Scholar
  23. 23.
    Surazhsky, V., Gotsman, C.: Intrinsic morphing of compatible triangulations. Int. J. Shape Model. 9(2), 191–201 (2003) zbMATHCrossRefGoogle Scholar
  24. 24.
    Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: Proceedings of ACM SIGGRAPH 1999, pp. 335–342 (August 1999) Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Hayley N. Iben
    • 1
    • 2
  • James F. O’Brien
    • 1
  • Erik D. Demaine
    • 3
  1. 1.University of California, BerkeleyBerkeleyUSA
  2. 2.Pixar Animation StudiosEmeryvilleUSA
  3. 3.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations