Discrete & Computational Geometry

, Volume 43, Issue 2, pp 321–338 | Cite as

Stabbing Simplices by Points and Flats

  • Boris Bukh
  • Jiří Matoušek
  • Gabriel Nivasch


The following result was proved by Bárány in 1982: For every d≥1, there exists c d >0 such that for every n-point set S in ℝ d , there is a point p∈ℝ d contained in at least c d n d+1O(n d ) of the d-dimensional simplices spanned by S.

We investigate the largest possible value of c d . It was known that c d ≤1/(2 d (d+1)!) (this estimate actually holds for every point set S). We construct sets showing that c d ≤(d+1)−(d+1), and we conjecture that this estimate is tight. The best known lower bound, due to Wagner, is c d γ d :=(d 2+1)/((d+1)!(d+1)d+1); in his method, p can be chosen as any centerpoint of S. We construct n-point sets with a centerpoint that is contained in no more than γ d n d+1+O(n d ) simplices spanned by S, thus showing that the approach using an arbitrary centerpoint cannot be further improved.

We also prove that for every n-point set S⊂ℝ d , there exists a (d−2)-flat that stabs at least c d,d−2 n 3O(n 2) of the triangles spanned by S, with \(c_{d,d-2}\ge\frac{1}{24}(1-1/(2d-1)^{2})\) . To this end, we establish an equipartition result of independent interest (generalizing planar results of Buck and Buck and of Ceder): Every mass distribution in ℝ d can be divided into 4d−2 equal parts by 2d−1 hyperplanes intersecting in a common (d−2)-flat.


Centerpoint Equipartition Equivariant map Selection lemma Simplex Cohomological index 


  1. 1.
    Alon, N., Bárány, I., Füredi, Z., Kleitman, D.J.: Point selections and weak ε-nets for convex hulls. Comb. Probab. Comput. 1, 189–200 (1992). zbMATHGoogle Scholar
  2. 2.
    Bárány, I.: A generalization of Carathéodory’s theorem. Discrete Math. 40, 141–152 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bárány, I., Füredi, Z., Lovász, L.: On the number of halving planes. Combinatorica 10(2), 175–183 (1990). zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, 2nd edn. Algorithms and Computation in Mathematics, vol. 10. Springer, Berlin (2006) zbMATHGoogle Scholar
  5. 5.
    Buck, R.C., Buck, E.F.: Equipartition of convex sets. Math. Mag. 22, 195–198 (1948–1949) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boros, E., Füredi, Z.: Su un teorema di Kárteszi nella geometria combinatoria. Archimede 2, 71–76 (1977) Google Scholar
  7. 7.
    Boros, E., Füredi, Z.: The number of triangles covering the center of an n-set. Geom. Dedic. 17, 69–77 (1984) zbMATHCrossRefGoogle Scholar
  8. 8.
    Bukh, B.: A point in many triangles. Electron. J. Combin. 13(1), Note 10, 3 pp. (2006), (electronic) Google Scholar
  9. 9.
    Ceder, J.G.: Generalized sixpartite problems. Bol. Soc. Mat. Mex. (2) 9, 28–32 (1964) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Dey, T.K., Edelsbrunner, H.: Counting triangle crossings and halving planes. Discrete Comput. Geom. 12(1), 281–289 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Eppstein, D.: Improved bounds for intersecting triangles and halving planes. J. Comb. Theory Ser. A 62(1), 176–182 (1993). zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fadell, E.R.: Ideal-valued generalizations of Ljusternik–Schnierelmann category, with applications. In: Fadell, E., et al. (eds.) Topics in Equivariant Topology. Sém. Math. Sup., vol. 108, pp. 11–54. Press Univ. Montréal, Montréal (1989) Google Scholar
  13. 13.
    Fadell, E.R., Husseini, S.: An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems. Ergod. Theory Dynam. Sys. 8, 73–85 (1988) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Inoue, A.: Borsuk-Ulam type theorems on Stiefel manifolds. Osaka J. Math. 43(1), 183–191 (2006). zbMATHMathSciNetGoogle Scholar
  15. 15.
    Kárteszi, F.: Extremalaufgaben über endliche Punktsysteme. Publ. Math. (Debr.) 4, 16–27 (1955) zbMATHGoogle Scholar
  16. 16.
    Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002) zbMATHGoogle Scholar
  17. 17.
    Matoušek, J.: Using the Borsuk–Ulam Theorem. Springer, Berlin (2008). Revised 2nd printing zbMATHCrossRefGoogle Scholar
  18. 18.
    Moon, J.W.: Topics on Tournaments. Holt, Rinehart and Winston, New York (1968) zbMATHGoogle Scholar
  19. 19.
    Nivasch, G., Sharir, M.: Eppstein’s bound on intersecting triangles revisited. J. Comb. Theory Ser. A 116(2), 494–497 (2009). arXiv:0804.4415 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Rado, R.: A theorem on general measure. J. Lond. Math. Soc. 21, 291–300 (1947) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Smorodinsky, S.: Combinatorial problems in computational geometry. Ph.D. thesis, Tel Aviv University, June 2003.
  22. 22.
    Wagner, U.: On k-sets and applications. Ph.D. thesis, ETH Zürich, June 2003.
  23. 23.
    Welzl, E.: Entering and leaving j-facets. Discrete Comput. Geom. 25, 351–364 (2001). zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Wendel, J.G.: A problem in geometric probability. Math. Scand. 11, 109–111 (1962) zbMATHMathSciNetGoogle Scholar
  25. 25.
    Živaljević, R.T.: User’s guide to equivariant methods in combinatorics II. Publ. Inst. Math. (Beogr.) 64(78), 107–132 (1998) Google Scholar
  26. 26.
    Živaljević, R.T.: Topological methods. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn. CRC Press, Boca Raton (2004). Chap. 14 Google Scholar
  27. 27.
    Živaljević, R.T., Vrećica, S.T.: The colored Tverberg’s problem and complexes of injective functions. J. Comb. Theory Ser. A 61(2), 309–318 (1992) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsFine HallPrincetonUSA
  2. 2.Department of Applied Mathematics and Institute of Theoretical Computer Science (ITI)Charles UniversityPrague 1Czech Republic
  3. 3.Blavatnik School of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations