Advertisement

Minimizing the Stabbing Number of Matchings, Trees, and Triangulations

  • Sándor P. FeketeEmail author
  • Marco E. Lübbecke
  • Henk Meijer
Article

Abstract

The (axis-parallel) stabbing number of a given set of line segments is the maximum number of segments that can be intersected by any one (axis-parallel) line. This paper deals with finding perfect matchings, spanning trees, or triangulations of minimum stabbing number for a given set of vertices. The complexity of finding a spanning tree of minimum stabbing number is one of the original 30 questions on “The Open Problems Project” list of outstanding problems in computational geometry by Demaine, Mitchell, and O’Rourke.

We show \(\mathcal{N}\mathcal{P}\) -hardness of stabbing problems by means of a general proof technique. For matchings, this also implies a nontrivial lower bound on the approximability. On the positive side, we propose a cut-based integer programming formulation for minimizing the stabbing number of matchings and spanning trees. From the corresponding linear programming relaxation we obtain polynomial-time lower bounds and show that there always is an optimal fractional solution that contains an edge of at least constant weight. We conjecture that the resulting iterated rounding scheme constitutes a constant-factor approximation algorithm.

Keywords

Stabbing number Matching Spanning tree Triangulation Complexity Linear programming relaxation Iterated rounding 

References

  1. 1.
    Agarwal, P.K.: Ray shooting and other applications of spanning trees with low stabbing number. SIAM J. Comput. 21(3), 540–570 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Aronov, B., Suri, S.: Stabbing triangulations by lines in 3D. In: Proc. 11th ACM Sympos. Computational Geometry, pp. 267–276 (1995) Google Scholar
  3. 3.
    Arkin, E.M., Bender, M.A., Demaine, E., Fekete, S.P., Mitchell, J.S.B., Sethia, S.: Optimal covering tours with turn costs. SIAM J. Comput. 35, 531–566 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Aronov, B., Fortune, S.: Approximating minimum-weight triangulations in three dimensions. Discrete Comput. Geom. 21(4), 527–549 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aronov, B., Brönnimann, H., Chang, A.Y., Chiang, Y.-J.: Cost-driven octree construction schemes: an experimental study. Comput. Geom. Theory Appl. 31, 127–148 (2005) zbMATHGoogle Scholar
  6. 6.
    Chazelle, B., Welzl, E.: Quasi-optimal range searching in space of finite vc-dimension. DISCG 4, 467–489 (1989) zbMATHMathSciNetGoogle Scholar
  7. 7.
    de Berg, M., van Kreveld, M.: Rectilinear decompositions with low stabbing number. Inf. Process. Lett. 52(4), 215–221 (1994) zbMATHCrossRefGoogle Scholar
  8. 8.
    Demaine, E.D., Mitchell, J.S.B., O’Rourke, J.: The open problems project. http://cs.smith.edu/~orourke/TOPP/Welcome.html (2003)
  9. 9.
    Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Natl. Burean Stand. 69B, 125–130 (1965) MathSciNetGoogle Scholar
  10. 10.
    Fekete, S.P.: On simple polygonalizations with optimal area. Discrete Comput. Geom. 23, 73–110 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fekete, S.P., Lübbecke, M.E., Meijer, H.: Minimizing the stabbing number of matchings, spanning trees, and triangulations. In Proc. 15th ACM-SIAM Sympos. Discrete Algorithms, pp. 430–439 (2004) Google Scholar
  12. 12.
    Fekete, S.P., Lübbecke, M.E., Meijer, H.: Computing structures of minimum stabbing number. Technical report (2008) Google Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability—A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979) zbMATHGoogle Scholar
  14. 14.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988) zbMATHGoogle Scholar
  15. 15.
    Held, M., Klosowski, J.T., Mitchell, J.S.B.: Evaluation of collision detection methods for virtual reality fly-throughs. In: Proc. 7th Canadian Conf. Computational Geometry, pp. 205–210 (1995) Google Scholar
  16. 16.
    Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: shoot a ray, take a walk. J. Algorithms 18, 403–431 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Jain, K.: Personal communication (2003) Google Scholar
  19. 19.
    Magnanti, T.L., Wolsey, L.A.: Optimal trees. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Models. Handbooks in Operations Research and Management Science, vol. 7, pp. 503–616. North-Holland, Amsterdam (1995) Google Scholar
  20. 20.
    Matoušek, J.: Spanning trees with low crossing number. Inf. Theor. Appl. 25, 102–123 (1991) Google Scholar
  21. 21.
    Mitchell, J.S.B., O’Rourke, J.: Computational geometry column 42. Int. J. Comput. Geom. Appl. 11(5), 573–582 (2001) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Padberg, M., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper. Res. 7, 67–80 (1982) zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003) zbMATHGoogle Scholar
  24. 24.
    Shewchuk, J.R.: Stabbing Delaunay tetrahedralizations. Discrete Comput. Geom. 32(3), 339–343 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Tóth, C.: Orthogonal subdivisions with low stabbing numbers. In: Proc. 9th International Workshop on Algorithms and Data Structures (WADS 2005). LNCS, vol. 3608, pp. 256–268. Springer, Berlin (2005) Google Scholar
  26. 26.
    Welzl, E.: On spanning trees with low crossing numbers. In: Monien, B., Ottmann, T. (eds.) Data Structures and Efficient Algorithms. LNCS, vol. 594. Springer, Berlin (1992) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sándor P. Fekete
    • 1
    Email author
  • Marco E. Lübbecke
    • 2
  • Henk Meijer
    • 3
  1. 1.Algorithms Group, Department of Computer ScienceBraunschweig University of TechnologyBraunschweigGermany
  2. 2.Institut für Mathematik, Sekr. MA 5-1Technische Universität BerlinBerlinGermany
  3. 3.Department of ScienceRoosevelt AcademyMiddelburg (ZL)The Netherlands

Personalised recommendations