Discrete & Computational Geometry

, Volume 40, Issue 2, pp 214–240 | Cite as

A Dense Packing of Regular Tetrahedra

Article

Abstract

We construct a dense packing of regular tetrahedra, with packing density D>.7786157.

Keywords

Crystallography Packing Regular solid Hilbert problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    \(A\rho\iota\sigma\tau o\tau\acute{\varepsilon}\lambda\eta\varsigma\) : \(\varPi\varepsilon\rho\grave{\iota}\)\(O\upsilon\rho\alpha\nu o\tilde{\upsilon}\) . Translation: Boethius: Aristotelēs. De Caelo. Translation: Guthrie, W.K.C.: Aristotle. On Heavenly Bodies. Leob Classical Library, vol. 338. Harvard University Press, vol. 6 (1986) Google Scholar
  2. 2.
    Betke, U., Henk, M.: (FORTRAN computer program) lattice_packing.f (1999) Google Scholar
  3. 3.
    Betke, U., Henk, M.: Densest lattice packings of 3-polytopes. Comput. Geom. 16(3), 157–186 (2000) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Conway, J.H., Torquato, S.: Packing, tiling, and covering with tetrahedra. Proc. Natl. Acad. Sci. U.S.A. 103, 10612–10617 (2006) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Grömer, H.: Über die dichteste gitterförmige Lagerung kongruenter Tetraeder. Mon. Math. 66, 12–15 (1962) MATHCrossRefGoogle Scholar
  6. 6.
    Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005) MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Hales, T.C., Ferguson, S.P.: Historical overview of the Kepler conjecture; A formulation of the Kepler conjecture; Sphere packings III: Extremal cases; Sphere packings IV: Detailed bounds; Sphere packings V: Pentahedral prisms; Sphere packings VI: Tame graphs and linear programs. Discrete Comput. Geom. 36(1), 5–265 (2006) CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Hilbert, D.C.: Mathematische Probleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl. 3, 253–297 (1900). Translation: Hilbert, D.C.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902) Google Scholar
  9. 9.
    Hoylman, D.J.: The densest lattice packing of tetrahedra. Bull. Am. Math. Soc. 76, 135–137 (1970) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hurley, A.C.: Some helical structures generated by reflexions. Aust. J. Phys. 38(3), 299–310 (1985) MathSciNetGoogle Scholar
  11. 11.
    Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig (1896). Reprint: Minkowski, H.: Geometrie der Zahlen. Chelsea (1953) Google Scholar
  12. 12.
    Senechal, M.: Which tetrahedra fill space? Math. Mag. 54(5), 227–243 (1981) MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Struik, D.J.: De impletione loci. Nieuw Arch. Wiskd. 15, 121–134 (1925) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations