Discrete & Computational Geometry

, Volume 40, Issue 3, pp 469–479

# On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes

Article

## Abstract

For polytopes P 1,P 2⊂ℝ d , we consider the intersection P 1P 2, the convex hull of the union CH(P 1P 2), and the Minkowski sum P 1+P 2. For the Minkowski sum, we prove that enumerating the facets of P 1+P 2 is NP-hard if P 1 and P 2 are specified by facets, or if P 1 is specified by vertices and P 2 is a polyhedral cone specified by facets. For the intersection, we prove that computing the facets or the vertices of the intersection of two polytopes is NP-hard if one of them is given by vertices and the other by facets. Also, computing the vertices of the intersection of two polytopes given by vertices is shown to be NP-hard. Analogous results for computing the convex hull of the union of two polytopes follow from polar duality. All of the hardness results are established by showing that the appropriate decision version, for each of these problems, is NP-complete.

## Keywords

Minkowski addition Extended convex hull Polytope intersection Polytopes Turing reduction

## References

1. 1.
Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms? Comput. Geom. 7, 265–301 (1997)
2. 2.
Balas, E.: On the convex hull of the union of certain polyhedra. Oper. Res. Lett. 7, 279–283 (1988)
3. 3.
Freund, R.M., Orlin, J.B.: On the complexity of four polyhedral set containment problems. Math. Program. 33(2), 139–145 (1985)
4. 4.
Fukuda, K.: From the zonotope construction to the Minkowski addition of convex polytopes. J. Symb. Comput. 38(4), 1261–1272 (2004)
5. 5.
Fukuda, K., Liebling, T.M., Lutolf, C.: Extended convex hull. Comput. Geom. 20(1–2), 13–23 (2001)
6. 6.
Fukuda, K., Weibel, C.: Computing all faces of the Minkowski sum of $$\mathcal{V}$$ -polytopes. In: Proceedings of the 17th Canadian Conference on Computational Geometry (2005) Google Scholar
7. 7.
Fukuda, K., Weibel, C.: f-vectors of Minkowski additions of convex polytopes. Discrete Comput. Geom. 37, 503–516 (2007)
8. 8.
Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: Computational complexity and applications to Grobner bases. SIAM J. Discrete Math. 6, 246–269 (1993)
9. 9.
Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1993).
10. 10.
Grünbaum, B.: Convex Polytopes, 2nd edn. Graduate Texts in Mathematics, vol. 221. Springer, Berlin (2003). Prepared by V. Kaibel, V.L. Klee, G.M. Ziegler Google Scholar
11. 11.
Huber, B., Rambau, J., Santos, F.: The Cayley trick, lifting subdivisions and the Bohne-Dress theorem on zonotopal tilings. J. Eur. Math. Soc. 2(2), 179–198 (2000)
12. 12.
Khachiyan, L., Boros, E., Borys, K., Elbassioni, K.M., Gurvich, V.: Generating all vertices of a polyhedron is hard. Discrete Comput. Geom. 39(1–3), 174–190 (2008)
13. 13.
Khachiyan, L.G.: A polynomial algorithm in linear programming. Sov. Math. Dokl. 20, 191–194 (1979)
14. 14.
Strumfels, B.: On the Newton polytope of the resultant. J. Algebr. Comb. 3(2), 207–236 (1994)
15. 15.
Yap, C.K.: Fundamental Problems in Algorithmic Algebra. Oxford University Press, Oxford (2000) Google Scholar
16. 16.
Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, Berlin (1995)