Discrete & Computational Geometry

, Volume 41, Issue 2, pp 318–327 | Cite as

A Continuous d-Step Conjecture for Polytopes

Article

Abstract

The curvature of a polytope, defined as the largest possible total curvature of the associated central path, can be regarded as a continuous analogue of its diameter. We prove an analogue of the result of Klee and Walkup. Namely, we show that if the order of the curvature is less than the dimension d for all polytopes defined by 2d inequalities and for all d, then the order of the curvature is less that the number of inequalities for all polytopes.

Keywords

Polytopes Diameter Hirsch conjecture d-Step conjecture Central path Curvature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dantzig, G.: Linear Programming and Extensions. Princeton University Press, Princeton (1963) MATHGoogle Scholar
  2. 2.
    Dedieu, J.-P., Malajovich, G., Shub, M.: On the curvature of the central path of linear programming theory. Found. Comput. Math. 5, 145–171 (2005) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Deza, A., Terlaky, T., Zinchenko, Y.: Central path curvature and iteration-complexity for redundant Klee–Minty cubes. In: Gao D. and Sherali H. (eds.) Advances in Mechanics and Mathematics, vol. III, pp. 215–248 (2007) Google Scholar
  4. 4.
    Deza, A., Terlaky, T., Zinchenko, Y.: Polytopes and arrangements: diameter and curvature. Oper. Res. Lett. 36-2, 215–222 (2008) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Fritzsche, K., Holt, F.: More polytopes meeting the conjectured Hirsch bound. Discrete Math. 205, 77–84 (1999) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Holt, F., Klee, V.: Many polytopes meeting the conjectured Hirsch bound. Discrete Comput. Geom. 20, 1–17 (1998) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Grünbaum, B.: Convex Polytopes. In: Kaibel, V., Klee, V., Ziegler, G. (eds.) Graduate Texts in Mathematics. vol. 221. Springer, Berlin (2003) Google Scholar
  8. 8.
    Kalai, G., Kleitman, D.: A quasi-polynomial bound for the diameter of graphs of polyhedra. Bull. Am. Math. Soc. 26, 315–316 (1992) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Klee, V., Walkup, D.: The d-step conjecture for polyhedra of dimension d<6. Acta Math. 133, 53–78 (1967) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization. SIAM, Philadelphia (2001) MATHGoogle Scholar
  11. 11.
    Roos, C., Terlaky, T., Vial, J.-Ph.: Interior Point Methods for Linear Optimization. Springer, Berlin (2006) MATHGoogle Scholar
  12. 12.
    Sonnevend, G., Stoer, J., Zhao, G.: On the complexity of following the central path of linear programs by linear extrapolation II. Math. Program. 52(1–3), 527–553 (1991) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Spivak, M.: Comprehensive Introduction to Differential Geometry. Publish or Perish, Houston (1990) Google Scholar
  14. 14.
    Ziegler, G.: Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152. Springer, Berlin (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Advanced Optimization Laboratory, Department of Computing and Software, School of Computational Engineering and ScienceMcMaster UniversityHamiltonCanada

Personalised recommendations