Advertisement

Discrete & Computational Geometry

, Volume 41, Issue 1, pp 119–134 | Cite as

Generalized Thrackle Drawings of Non-bipartite Graphs

  • Grant CairnsEmail author
  • Yury Nikolayevsky
Article

Abstract

A graph drawing is called a generalized thrackle if every pair of edges meets an odd number of times. In a previous paper, we showed that a bipartite graph G can be drawn as a generalized thrackle on an oriented closed surface M if and only if G can be embedded in M. In this paper, we use Lins’ notion of a parity embedding and show that a non-bipartite graph can be drawn as a generalized thrackle on an oriented closed surface M if and only if there is a parity embedding of G in a closed non-orientable surface of Euler characteristic χ(M)−1. As a corollary, we prove a sharp upper bound for the number of edges of a simple generalized thrackle.

Keywords

Graph drawing Thrackle 

References

  1. 1.
    Archdeacon, D.: A Kuratowski theorem for the projective plane. J. Graph Theory 5, 243–246 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974) zbMATHGoogle Scholar
  3. 3.
    Berger, M., Gostiaux, B.: Differential Geometry: Manifolds, Curves, and Surfaces. Graduate Texts in Mathematics, vol. 115. Springer, New York (1988) zbMATHGoogle Scholar
  4. 4.
    Bredon, G.E.: Topology and Geometry. Graduate Texts in Mathematics, vol. 139. Springer, New York (1997) zbMATHGoogle Scholar
  5. 5.
    Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput. Geom. 23, 191–206 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cairns, G., McIntyre, M., Nikolayevsky, Y.: The thrackle conjecture for K 5 and K 3,3. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary Mathematics. Am. Math. Soc., Providence (2004) Google Scholar
  7. 7.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2005) zbMATHGoogle Scholar
  8. 8.
    Dieudonné, J.: A History of Algebraic and Differential Topology. 1900–1960. Birkhäuser, Boston (1989) zbMATHGoogle Scholar
  9. 9.
    Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry, Part III. Springer, Berlin (1990) Google Scholar
  10. 10.
    Edelen, D.G.B.: Applied Exterior Calculus. Dover, New York (2005) zbMATHGoogle Scholar
  11. 11.
    Giblin, P.J.: Graphs, Surfaces and Homology. Chapman & Hall, Boca Raton (1981) zbMATHGoogle Scholar
  12. 12.
    Gross, J.L., Tucker, T.W.: Topological Graph Theory. Dover, New York (2001) zbMATHGoogle Scholar
  13. 13.
    Grove, L.C.: Classical Groups and Geometric Algebra. Graduate Studies in Mathematics, vol. 39. Am. Math. Soc., Providence (2002) Google Scholar
  14. 14.
    Lins, S.: Combinatorics of orientation reversing polygons. Aequ. Math. 29, 123–131 (1985) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lovász, L., Pach, J., Szegedy, M.: On Conway’s thrackle conjecture. Discrete Comput. Geom. 18, 368–376 (1997) CrossRefGoogle Scholar
  16. 16.
    Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Press, Baltimore (2001) zbMATHGoogle Scholar
  17. 17.
    Perlstein, A., Pinchasi, R.: Generalized thrackles and geometric graphs in ℝ3 with no pair of strongly avoiding edges. Preprint Google Scholar
  18. 18.
    Prasolov, V.V.: Elements of Combinatorial and Differential Topology. Graduate Studies in Mathematics, vol. 74. Am. Math. Soc., Providence (2006) zbMATHGoogle Scholar
  19. 19.
    Woodall, D.R.: Thrackles and deadlock. In: Combinatorial Mathematics and Its Applications, pp. 335–347. Academic Press, San Diego (1971) Google Scholar
  20. 20.
    Woodall, D.R.: Unsolved problems. In: Combinatorics, Proc. Conf. Combinatorial Math., pp. 359–363. Math. Inst., Oxford (1972) Google Scholar
  21. 21.
    Zaslavsky, T.: The projective-planar signed graphs. Discrete Math. 113, 223–247 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Zaslavsky, T.: The order upper bound on parity embedding of a graph. J. Comb. Theory Ser. B 68, 149–160 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Zieschang, H., Vogt, E., Coldewey, H.-D.: Surfaces and Planar Discontinuous Groups. Lecture Notes in Mathematics, vol. 835. Springer, Berlin (1980) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsLa Trobe UniversityMelbourneAustralia

Personalised recommendations