Discrete & Computational Geometry

, Volume 40, Issue 3, pp 325–356 | Cite as

Reconstruction Using Witness Complexes

  • Leonidas J. GuibasEmail author
  • Steve Y. Oudot


We present a novel reconstruction algorithm that, given an input point set sampled from an object S, builds a one-parameter family of complexes that approximate S at different scales. At a high level, our method is very similar in spirit to Chew’s surface meshing algorithm, with one notable difference though: the restricted Delaunay triangulation is replaced by the witness complex, which makes our algorithm applicable in any metric space. To prove its correctness on curves and surfaces, we highlight the relationship between the witness complex and the restricted Delaunay triangulation in 2d and in 3d. Specifically, we prove that both complexes are equal in 2d and closely related in 3d, under some mild sampling assumptions.


Sampling Reconstruction Delaunay triangulation Witness complex 


  1. 1.
    Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22(4), 481–504 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Amenta, N., Choi, S.: One-pass Delaunay filtering for homeomorphic 3D surface reconstruction. Manuscript (1999) Google Scholar
  3. 3.
    Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 12, 125–141 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Attali, D., Edelsbrunner, H., Mileyko, Y.: Weak witnesses for Delaunay triangulations of submanifolds. In: Proc. ACM Symp. on Solid and Physical Modeling, pp. 143–150 (2007) Google Scholar
  5. 5.
    Boissonnat, J.-D., Cazals, F.: Natural neighbor coordinates of points on a surface. Comput. Geom.: Theory Appl. 19, 155–173 (2001) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Boissonnat, J.-D., Guibas, L.J., Oudot, S.Y.: Manifold reconstruction in arbitrary dimensions using witness complexes. In: Proc. 23rd Symp. on Comput. Geom., pp. 194–203 (2007) Google Scholar
  7. 7.
    Boissonnat, J.-D., Oudot, S.: Provably good sampling and meshing of surfaces. Graph. Models 67(5), 405–451 (2005) zbMATHCrossRefGoogle Scholar
  8. 8.
    Boissonnat, J.-D., Oudot, S.: Provably good sampling and meshing of Lipschitz surfaces. In: Proc. 22nd Annu. Symp. Comput. Geom., pp. 337–346 (2006) Google Scholar
  9. 9.
    Cazals, F., Giesen, J.: Delaunay triangulation based surface reconstruction. In: Boissonnat, J.D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces, pp. 231–273. Springer, Berlin (2006) CrossRefGoogle Scholar
  10. 10.
    Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theory for compact sets in Euclidean space. In: Proc. 22nd Annu. Symp. Comput. Geom., pp. 319–326 (2006) Google Scholar
  11. 11.
    Chazal, F., Lieutier, A.: Weak feature size and persistent homology: Computing homology of solids in ℝn from noisy data samples. Technical Report 378, Institut de Mathématiques de Bourgogne (2004). Partially published in Proc. 21st Annu. ACM Symp. on Comput. Geom., pp. 255–262 (2005) Google Scholar
  12. 12.
    Chazal, F., Lieutier, A.: The λ-medial axis. Graph. Models 67(4), 304–331 (2005) zbMATHCrossRefGoogle Scholar
  13. 13.
    Chazal, F., Lieutier, A.: Topology guaranteeing manifold reconstruction using distance function to noisy data. In: Proc. 22nd Annu. Symp. on Comput. Geom., pp. 112–118 (2006) Google Scholar
  14. 14.
    Chazal, F., Oudot, S.Y.: Towards persistence-based reconstruction in Euclidean spaces. In: Proc. 24th ACM Symp. Comput. Geom., pp. 232–241 (2008) Google Scholar
  15. 15.
    Cheng, S.-W., Dey, T.K., Ramos, E.A.: Manifold reconstruction from point samples. In: Proc. 16th Symp. Discrete Algorithms, pp. 1018–1027 (2005) Google Scholar
  16. 16.
    Cheng, S.-W., Funke, S., Golin, M., Kumar, P., Poon, S.-H., Ramos, E.: Curve reconstruction from noisy samples. Comput. Geom.: Theory Appl. 31(1–2), 63–100 (2005) zbMATHMathSciNetGoogle Scholar
  17. 17.
    Chew, L.P.: Guaranteed-quality mesh generation for curved surfaces. In: Proc. 9th Annu. ACM Symp. Comput. Geom., pp. 274–280 (1993) Google Scholar
  18. 18.
    Clarkson, K.L.: Nearest-neighbor searching and metric space dimensions. In: Shakhnarovich, G., Darrell, T., Indyk, P. (eds.) Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, pp. 15–59. MIT Press, Cambridge (2006) Google Scholar
  19. 19.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: Proc. 21st ACM Symp. Comput. Geom., pp. 263–271 (2005) Google Scholar
  20. 20.
    de Silva, V.: A weak definition of Delaunay triangulation. Technical report, Stanford University, October 2003 Google Scholar
  21. 21.
    de Silva, V.: A weak characterisation of the Delaunay triangulation. Geom. Dedicata (2008). doi: 10.2007/s10711-008-9261-1. Online First Google Scholar
  22. 22.
    de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Proc. Symp. Point-Based Graphics, pp. 157–166 (2004) Google Scholar
  23. 23.
    Dey, T.K., Giesen, J., Goswami, S., Zhao, W.: Shape dimension and approximation from samples. Discrete Comput. Geom. 29, 419–434 (2003) zbMATHMathSciNetGoogle Scholar
  24. 24.
    Dey, T.K., Goswami, S.: Provable surface reconstruction from noisy samples. Comput. Geom.: Theory Appl. 35(1–2), 124–141 (2006) zbMATHMathSciNetGoogle Scholar
  25. 25.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proc. 41st Annu. IEEE Symp. Found. Comput. Sci., pp. 454–463 (2000) Google Scholar
  26. 26.
    Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Graham, R.L.: Sets of points with given minimum separation (solution to Problem E1921). Am. Math. Mon. 75, 192–193 (1968) CrossRefGoogle Scholar
  28. 28.
    Kolluri, R.: Provably good moving least squares. In: Proc. 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1008–1017 (2005) Google Scholar
  29. 29.
    Mederos, B., Amenta, N., Velho, L., de Figueiredo, L.H.: Surface reconstruction for noisy point clouds. In: Proc. 3rd Symp. on Geometry Processing, pp. 53–62 (2005) Google Scholar
  30. 30.
    Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1), 419–441 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Oudot, S., Rineau, L., Yvinec, M.: Meshing volumes with curved boundaries. Eng. Comput. (2008, to appear). Special issue IMR 2005 Google Scholar
  32. 32.
    Oudot, S.Y.: On the topology of the restricted Delaunay triangulation and witness complex in higher dimensions. Technical report, Stanford University, November 2006. LANL arXiv:0803.1296v1 [cs.CG],
  33. 33.
    Pirl, U.: Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten. Math. Nachr. 40, 111–124 (1969) zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000) CrossRefGoogle Scholar
  35. 35.
    Shewchuk, J.R.: What is a good linear element? Interpolation, conditioning, and quality measures. In: Proc. 11th Int. Meshing Roundtable, pp. 115–126 (2002) Google Scholar
  36. 36.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000) CrossRefGoogle Scholar
  37. 37.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Dept. Computer ScienceStanford UniversityStanfordUSA

Personalised recommendations