Advertisement

Zonotopes with Large 2D-Cuts

  • Thilo Rörig
  • Nikolaus Witte
  • Günter M. Ziegler
Article

Abstract

There are d-dimensional zonotopes with n zones for which a 2-dimensional central section has Ω(n d−1) vertices. For d=3, this was known, with examples provided by the “Ukrainian easter eggs” by Eppstein et al. Our result is asymptotically optimal for all fixed d≥2.

Keywords

Zonotopes Cuts Projections Complexity Ukrainian easter egg 

References

  1. 1.
    Amenta, N., Ziegler, G.M.: Shadows and slices of polytopes. In Proceedings of the 12th Annual ACM Symposium on Computational Geometry, May 1996, pp. 10–19 Google Scholar
  2. 2.
    Amenta, N., Ziegler, G.M.: Deformed products and maximal shadows. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, South Hadley, MA, 1996. Contemporary Math., vol. 223, pp. 57–90. Am. Math. Soc., Providence (1998) Google Scholar
  3. 3.
    Bern, M.W., Eppstein, D.: Optimization over zonotopes and training support vector machines. In: Dehne, F.K.H.A., Sack, J.-R., Tamassia, R. (eds.) Proc. 7th Worksh. Algorithms and Data Structures (WADS 2001). Lecture Notes in Computer Science, vol. 2125, pp. 111–121. Springer, Berlin (2001) CrossRefGoogle Scholar
  4. 4.
    Bern, M.W., Eppstein, D., Guibas, L.J., Hershberger, J.E., Suri, S., Wolter, J.D.: The centroid of points with approximate weights. In: Spirakis, P.G. (ed.) Proc. 3rd Eur. Symp. Algorithms, ESA 1995. Lecture Notes in Computer Science, vol. 979, pp. 460–472. Springer, Berlin (1995) Google Scholar
  5. 5.
    Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids, 2nd edn., Encyclopedia of Mathematics, vol. 46. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  6. 6.
    Chvátal, V.: Linear Programming. Freeman, New York (1983) zbMATHGoogle Scholar
  7. 7.
    Crisp, D.J., Burges, C.J.C.: A geometric interpretation of ν-SVM classifiers. In: Solla, S.A., Leen, T.K., Müller, K.-R. (eds.) NIPS (Neural Information Processing Systems), vol. 12, pp. 244–250. MIT Press, Cambridge (1999) Google Scholar
  8. 8.
    Eppstein, D.: Ukrainian easter egg. In: “The Geometry Junkyard”, computational and recreational geometry, 23 January 1997, http://www.ics.uci.edu/~eppstein/junkyard/ukraine/
  9. 9.
    Gawrilow, E., Joswig, M.: Polymake, version 2.3 (desert), 1997–2007, with contributions by Thilo Rörig and Nikolaus Witte, free software, http://www.math.tu-berlin.de/polymake
  10. 10.
    Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Polytopes–Combinatorics and Computation, Oberwolfach, 1997. DMV Seminars, vol. 29, pp. 43–73. Birkhäuser, Basel (2000) Google Scholar
  11. 11.
    Goldfarb, D.: On the complexity of the simplex algorithm. In: Advances in Optimization and Numerical Analysis. Proc. 6th Workshop on Optimization and Numerical Analysis, Oaxaca, Mexico, January 1992, pp. 25–38. Kluwer Academic, Dordrecht (1994). Based on: Worst case complexity of the shadow vertex simplex algorithm. Preprint, Columbia University 1983, 11 pages Google Scholar
  12. 12.
    Hazan, E., Megiddo, N.: The “arrangement method” for linear programming is equivalent to the phase-one method. IBM Research Report RJ10414 (A0708-017), IBM, August 29 2007 Google Scholar
  13. 13.
    Koltun, V.: The Arrangement Method. Lecture at the Bay Area Discrete Math. Day XII, April 15, 2006, http://video.google.com/videoplay?docid=-6332244592098093013
  14. 14.
    Mosler, K.: Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach. Lecture Notes in Statistics, vol. 165. Springer, Berlin (2002) zbMATHGoogle Scholar
  15. 15.
    Murty, K.G.: Computational complexity of parametric linear programming. Math. Program. 19, 213–219 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sanyal, R., Ziegler, G.M.: Construction and analysis of projected deformed products. Preprint, October 2007, 20 pages; http://arxiv.org/abs/0710.2162
  17. 17.
    Wagner, U.: Conference on geometric and topological combinatorics: problem session. Oberwolfach Rep. 4(1), 265–267 (2006) Google Scholar
  18. 18.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Math., vol. 152. Springer, Berlin (1995), Revised 7th printing 2007 zbMATHGoogle Scholar
  19. 19.
    Ziegler, G.M.: Projected products of polygons. Electron. Res. Announc. Am. Math. Soc. 10, 122–134 (2004) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thilo Rörig
    • 1
  • Nikolaus Witte
    • 1
  • Günter M. Ziegler
    • 1
  1. 1.MA 6–2, Inst. MathematicsTechnische Universität BerlinBerlinGermany

Personalised recommendations