Advertisement

Discrete & Computational Geometry

, Volume 41, Issue 2, pp 284–317 | Cite as

Multitriangulations as Complexes of Star Polygons

  • Vincent Pilaud
  • Francisco Santos
Article

Abstract

Maximal (k+1)-crossing-free graphs on a planar point set in convex position, that is, k-triangulations, have received attention in recent literature, motivated by several interpretations of them.

We introduce a new way of looking at k-triangulations, namely as complexes of star polygons. With this tool we give new, direct proofs of the fundamental properties of k-triangulations, as well as some new results. This interpretation also opens up new avenues of research that we briefly explore in the last section.

Keywords

Generalized triangulation Crossing-free graph Star polygons Flips Associahedron 

References

  1. 1.
    Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Am. Math. Soc. 114, 563–571 (2007) zbMATHMathSciNetGoogle Scholar
  2. 2.
    Billera, L.J., Filliman, P., Sturmfels, B.: Constructions and complexity of secondary polytopes. Adv. Math. 83(2), 155–179 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Birman, J.S.: Braids, Links and Mapping Class Groups. Annals of Mathematical Studies, vol. 82. Princeton University Press, Princeton (1974) Google Scholar
  4. 4.
    Björner, A., Las Vergnas, M., Strumfelds, B., White, N., Ziegler, G.M.: Oriented Matroids, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 46. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  5. 5.
    Capoyleas, V., Pach, J.: A Turán-type theorem on chords of a convex polygon. J. Comb. Theory Ser. B 56(1), 9–15 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Coxeter, H.S.M.: Introduction to Geometry, 2nd edn. Wiley, New York (1969) zbMATHGoogle Scholar
  7. 7.
    Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover, New York (1973) Google Scholar
  8. 8.
    Desainte-Catherine, M., Viennot, G.: Enumeration of certain Young tableaux with bounded height. In: Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985). Lecture Notes in Math., vol. 1234, pp. 58–67. Springer, New York (1986) CrossRefGoogle Scholar
  9. 9.
    Dress, A.W.M., Klucznik, M., Koolen, J.H., Moulton, V.: \(2kn-\atop{2k+1}{2}\) : A note on extremal combinatorics of cyclic split systems. Sém. Lothar. Comb. 47, Article B47b, 17 pp. (electronic) (2001/02) Google Scholar
  10. 10.
    Dress, A.W.M., Koolen, J.H., Moulton, V.: On line arrangements in the hyperbolic plane. Eur. J. Comb. 23(5), 549–557 (2002) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Dress, A.W.M., Koolen, J.H., Moulton, V.: 4n−10. Ann. Comb. 8(4), 463–471 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dress, A., Grünewald, S., Jonsson, J., Moulton, V.: The simplicial complex Δ n,k of k-compatible line arrangements in the hyperbolic plane. Part 1: The structure of Δ n,k. Preprint (2007) Google Scholar
  13. 13.
    Dress, A., Grünewald, S., Jonsson, J., Moulton, V.: The simplicial complex Δ n,k of k-compatible line arrangements in the hyperbolic plane. Part 2 (2008, in preparation) Google Scholar
  14. 14.
    Elizalde, S.: A bijection between 2-triangulations and pairs of non-crossing Dyck paths. J. Comb. Theory Ser. A 114(8), 1481–1503 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fomin, S., Reading, N.: Root systems and generalized associahedra. In: Geometric Combinatorics. IAS/Park City Math. Ser., vol. 13, pp. 63–131. Am. Math. Soc., Providence (2007) Google Scholar
  16. 16.
    Graver, J.E.: Counting on Frameworks. The Dolciani Mathematical Expositions, vol. 25. The Mathematical Association of America, Washington (2001) zbMATHGoogle Scholar
  17. 17.
    Graver, J.E., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Mathematics, vol. 2. American Mathematical Society, Providence (1993) zbMATHGoogle Scholar
  18. 18.
    Herzog, J., Trung, N.V.: Gröbner bases and multiplicity of determinantal and Pfaffian ideals. Adv. Math. 96, 1–37 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hohlweg, C., Lange, C.E.M.C.: Realizations of the associahedron and cyclohedron. Discrete Comput. Geom. 37, 517–543 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ivanov, N.V.: Mapping class group. In: Daverman, R.J., Sher, R.B. (eds.) Handbook of Geometric Topology, pp. 523–633. North-Holland, Amsterdam (2002) Google Scholar
  21. 21.
    Jonsson, J.: Generalized triangulations of the n-gon. Unpublished manuscript (2003). An abstract was included in: Topological and Geometric Combinatorics, April 6th–April 12th, 2003, Mathematisches Forschungsinstitut Oberwolfach, Report No. 16/2003, http://www.mfo.de/programme/schedule/2003/15/Report16_2003.pdf
  22. 22.
    Jonsson, J.: Generalized triangulations and diagonal-free subsets of stack polyominoes. J. Comb. Theory Ser. A 112(1), 117–142 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Knuth, D.E.: Axioms and Hulls. Lecture Notes in Computer Science, vol. 606. Springer, New York (1992) zbMATHGoogle Scholar
  24. 24.
    Krattenthaler, C.: Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes. Adv. Appl. Math. 37(3), 404–431 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lee, C.W.: The associahedron and triangulations of the n-gon. Eur. J. Comb. 10(6), 551–560 (1989) zbMATHGoogle Scholar
  26. 26.
    Loday, J.-L.: Realization of the Stasheff polytope. Arch. Math. (Basel) 83(3), 267–278 (2004) zbMATHMathSciNetGoogle Scholar
  27. 27.
    Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Math. 308(8), 1425–1437 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Nakamigawa, T.: A generalization of diagonal flips in a convex polygon. Theor. Comput. Sci. 235(2), 271–282 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Pocchiola, M., Vegter, G.: Order types and visibility types of configurations of disjoint convex plane sets. Technical report, LIENS, Paris (January 1994) Google Scholar
  30. 30.
    Pocchiola, M., Vegter, G.: The visibility complex. Int. J. Comput. Geom. Appl. 6(3), 279–308 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Richter-Gebert, J., Ziegler, G.M.: Oriented matroids. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. Ser. Discrete Math. Appl., pp. 111–132. CRC, New York (2004) Google Scholar
  32. 32.
    Rote, G., Santos, F., Streinu, I.: Expansive motions and the polytope of pointed pseudo-triangulations. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry, The Goodman-Pollack Festschrift, Algorithms Combin., vol. 25, pp. 699–736. Springer, New York (2003) Google Scholar
  33. 33.
    Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations—a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry: Twenty Years Later. Contemporary Mathematics, vol. 453, pp. 343–410. Am. Math. Soc., Providence (2008) Google Scholar
  34. 34.
    Rubey, M.: Increasing and decreasing sequences in fillings of moon polyominoes. Adv. Appl. Math. (2007, to appear) [arXiv:math.CO/0604140]
  35. 35.
    Santos, F.: Geometric bistellar flips: The setting, the context and a construction. In: International Congress of Mathematicians, vol. III, pp. 931–962. Eur. Math. Soc., Zürich (2006) Google Scholar
  36. 36.
    Streinu, I., Theran, L.: Sparse hypergraphs and pebble game algorithms, Europ. J. Combin. (2007, to appear) [arXiv:math.CO/0703921]
  37. 37.
    Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999) Google Scholar
  38. 38.
    Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, triangulations, and hyperbolic geometry. J. Am. Math. Soc. 1(3), 647–681 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Whiteley, W.: Vertex splitting in isostatic frameworks. Struct. Topol. 16, 23–30 (1990) zbMATHMathSciNetGoogle Scholar
  40. 40.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Département d’InformatiqueÉcole Normale SupérieureParisFrance
  2. 2.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain

Personalised recommendations