Discrete & Computational Geometry

, Volume 39, Issue 1–3, pp 59–66

Siegel’s Lemma and Sum-Distinct Sets

Article

Abstract

Let L(x)=a1x1+a2x2+⋅⋅⋅+anxn, n≥2, be a linear form with integer coefficients a1,a2,…,an which are not all zero. A basic problem is to determine nonzero integer vectors x such that L(x)=0, and the maximum norm ‖x‖ is relatively small compared with the size of the coefficients a1,a2,…,an. The main result of this paper asserts that there exist linearly independent vectors x1,…,xn−1∈ℤn such that L(xi)=0, i=1,…,n−1, and
$$\|{\mathbf{x}}_{1}\|\cdots\|{\mathbf{x}}_{n-1}\|<\frac{\|{\mathbf{a}}\|}{\sigma_{n}},$$
where a=(a1,a2,…,an) and
$$\sigma_{n}=\frac{2}{\pi}\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{n}\,dt.$$

This result also implies a new lower bound on the greatest element of a sum-distinct set of positive integers (Erdös–Moser problem). The main tools are the Minkowski theorem on successive minima and the Busemann theorem from convex geometry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliev, I.: On a decomposition of integer vectors. Ph.D. Dissertation, Institute of Mathematics, PAN, Warsaw (2001) Google Scholar
  2. 2.
    Ball, K.: Cube slicing in ℝn. Proc. Am. Math. Soc. 97(3), 465–472 (1986) MATHCrossRefGoogle Scholar
  3. 3.
    Bombieri, E., Vaaler, J.: On Siegel’s lemma. Invent. Math. 73, 11–32 (1983). Addendum. Invent. Math. 75, 377 (1984) CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Borwein, D., Borwein, J.: Some remarkable properties of sinc and related integrals. Ramanujan J. 5(1), 73–89 (2001) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Borwein, P., Mossinghoff, M.: Newman polynomials with prescribed vanishing and integer sets with distinct subset sums. Math. Comput. 72(242), 787–800 (2003); (electronic) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chakerian, D., Logothetti, D.: Cube slices, pictorial triangles, and probability. Math. Mag. 64(4), 219–241 (1991) MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Elkies, N.D.: An improved lower bound on the greatest element of a sum-distinct set of fixed order. J. Comb. Theory Ser. A 41(1), 89–94 (1986) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Erdös, P.: Problems and results in additive number theory. In: Colloque sur la Théorie des Nombres, pp. 127–137, Bruxelles (1955) Google Scholar
  9. 9.
    Gardner, R.J.: Geometric Tomography. Encyclopedia of Mathematics and Its Applications, vol. 58. Cambridge University Press, Cambridge (1995) MATHGoogle Scholar
  10. 10.
    Gruber, P.M., Lekkerkerker, C.G.: Geometry of Numbers. North-Holland, Amsterdam (1987) MATHGoogle Scholar
  11. 11.
    Guy, R.K.: Unsolved Problems in Number Theory, 3rd edn. Problem Books in Mathematics. Unsolved Problems in Intuitive Mathematics. Springer, New York (2004) Google Scholar
  12. 12.
    Laplace, P.S.: Théorie Analytique des Probabilités. Courcier Imprimeur, Paris (1812) Google Scholar
  13. 13.
    Medhurst, R.G., Roberts, J.H.: Evaluation of the integral I n(b)=(2/π) 0((sin x)/x)ncos (bx) dx. Math. Comput. 19, 113–117 (1965) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pólya, G.: Berechnung eines Bestimmten Integrals. Math. Ann. 74, 204–212 (1913) CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Schinzel, A.: A property of polynomials with an application to Siegel’s lemma. Mon.hefte Math. 137, 239–251 (2002) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sloane, N.J.A.: Sequences A049330 and A049331. In: The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/
  17. 17.
    Woods, A.C.: The anomaly of convex bodies. Proc. Camb. Philos. Soc. 52, 406–423 (1956) MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of MathematicsUniversity of Edinburgh, James Clerk Maxwell Building, King’s BuildingsEdinburghScotland

Personalised recommendations