Discrete & Computational Geometry

, Volume 39, Issue 1–3, pp 442–454 | Cite as

Odd Crossing Number and Crossing Number Are Not the Same

  • Michael J. Pelsmajer
  • Marcus Schaefer
  • Daniel Štefankovič


The crossing number of a graph is the minimum number of edge intersections in a plane drawing of a graph, where each intersection is counted separately. If instead we count the number of pairs of edges that intersect an odd number of times, we obtain the odd crossing number. We show that there is a graph for which these two concepts differ, answering a well-known open question on crossing numbers. To derive the result we study drawings of maps (graphs with rotation systems).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archdeacon, D.: Problems in topological graph theory. http://www.emba.uvm.edu/~archdeac/problems/altcross.html (accessed April 7th, 2005)
  2. 2.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebr. Discrete Methods 4(3), 312–316 (1983) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gross, J.L., Tucker, T.W.: Topological Graph Theory. Dover, Mineola (2001). Reprint of the 1987 original MATHGoogle Scholar
  4. 4.
    Chojnacki, C. (Haim Hanani): Über wesentlich unplättbare Kurven im drei-dimensionalen Raume. Fundam. Math. 23, 135–142 (1934) MATHGoogle Scholar
  5. 5.
    Kolman, P., Matoušek, J.: Crossing number, pair-crossing number, and expansion. J. Comb. Theory Ser. B 92(1), 99–113 (2004) MATHCrossRefGoogle Scholar
  6. 6.
    Pach, J.: Crossing numbers. In: Discrete and Computational Geometry (Tokyo, 1998). Lecture Notes in Comput. Sci., vol. 1763, pp. 267–273. Springer, Berlin (2000) Google Scholar
  7. 7.
    Pach, J., Tóth, G.: Which crossing number is it anyway? J. Comb. Theory Ser. B 80(2), 225–246 (2000) MATHCrossRefGoogle Scholar
  8. 8.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings. In: EuroComb, April 2005 Google Scholar
  9. 9.
    Székely, L.A.: A successful concept for measuring non-planarity of graphs: the crossing number. Discrete Math. 276(1–3), 331–352 (2004). 6th International Conference on Graph Theory MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tutte, W.T.: Toward a theory of crossing numbers. J. Comb. Theory 8, 45–53 (1970) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Valtr, P.: On the pair-crossing number. In: Combinatorial and Computational Geometry. MSRI Publications, vol. 52, pp. 545–551 (2005) Google Scholar
  12. 12.
    West, D.: Open problems—graph theory and combinatorics. http://www.math.uiuc.edu/~west/openp/ (accessed April 7th, 2005)

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael J. Pelsmajer
    • 1
  • Marcus Schaefer
    • 2
  • Daniel Štefankovič
    • 3
  1. 1.Department of Applied MathematicsIllinois Institute of TechnologyChicagoUSA
  2. 2.Department of Computer ScienceDePaul UniversityChicagoUSA
  3. 3.Computer Science DepartmentUniversity of RochesterRochesterUSA

Personalised recommendations