Discrete & Computational Geometry

, Volume 40, Issue 3, pp 414–429 | Cite as

Aperture-Angle and Hausdorff-Approximation of Convex Figures

  • Hee-Kap Ahn
  • Sang Won Bae
  • Otfried Cheong
  • Joachim Gudmundsson
Article

Abstract

The aperture angleα(x,Q) of a point xQ in the plane with respect to a convex polygon Q is the angle of the smallest cone with apex x that contains Q. The aperture angle approximation error of a compact convex set C in the plane with respect to an inscribed convex polygon QC is the minimum aperture angle of any xCQ with respect to Q. We show that for any compact convex set C in the plane and any k>2, there is an inscribed convex k-gon QC with aperture angle approximation error \((1-\frac{2}{k+1})\pi\) . This bound is optimal, and settles a conjecture by Fekete from the early 1990s.

The same proof technique can be used to prove a conjecture by Brass: If a polygon P admits no approximation by a sub-k-gon (the convex hull of k vertices of P) with Hausdorff distance σ, but all subpolygons of P (the convex hull of some vertices of P) admit such an approximation, then P is a (k+1)-gon. This implies the following result: For any k>2 and any convex polygon P of perimeter at most 1 there is a sub-k-gon Q of P such that the Hausdorff-distance of P and Q is at most  \(\frac{1}{k+1}\sin\frac{\pi}{k+1}\) .

Keywords

Hausdorff approximation Aperture angle Convex figure Subpolygon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bose, P., Hurtado, F., Omaña-Pulido, E., Snoeyink, J., Toussaint, G.T.: Some aperture angle optimization problems. Algorithmica 33, 411–435 (2002) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brass, P.: On the approximation of polygons by subpolygons. In: Proc. European Workshop Comput. Geom. (EuroCG), pp. 59–61 (2000) Google Scholar
  3. 3.
    Brass, P., Lassak, M.: Problems on approximation by triangles. Geombinatorics 10, 103–115 (2001) MATHMathSciNetGoogle Scholar
  4. 4.
    Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, Berlin (2005) MATHGoogle Scholar
  5. 5.
    Cheong, O., van Oostrum, R.: Reaching a polygon with directional uncertainty. Int. J. Comput. Geom. Appl. 11, 197–214 (2001) MATHCrossRefGoogle Scholar
  6. 6.
    Fekete, S.: Personal communication Google Scholar
  7. 7.
    Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: Moving an angle around a region. In: Algorithm Theory—SWAT’98. Lecture Notes in Computer Science, vol. 1432, pp. 71–82 (1998) Google Scholar
  8. 8.
    Jenkner, M.: Approximation konvexer Kurven. Master’s thesis, Universität zu Köln (1997) Google Scholar
  9. 9.
    Popov, V.A.: Approximation of convex bodies. C. R. Acad. Bulg. Sci. 21, 993–995 (1968) (in Russian, see Zbl 215.50601) MATHGoogle Scholar
  10. 10.
    Popov, V.A.: Approximation of convex sets. B’lgar. Akad. Nauk. Otdel. Mat. Fiz. Nauk. Izv. Mat. Inst. 11, 67–80 (1970) (in Bulgarian, with Russian and English summary) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hee-Kap Ahn
    • 1
  • Sang Won Bae
    • 2
  • Otfried Cheong
    • 2
  • Joachim Gudmundsson
    • 3
  1. 1.Department of Computer Science and EngineeringPOSTECHPohangKorea
  2. 2.Division of Computer ScienceKorea Advanced Institute of Science and TechnologyDaejonKorea
  3. 3.National ICT Australia LtdSydneyAustralia

Personalised recommendations