Advertisement

Discrete & Computational Geometry

, Volume 40, Issue 3, pp 414–429 | Cite as

Aperture-Angle and Hausdorff-Approximation of Convex Figures

  • Hee-Kap Ahn
  • Sang Won Bae
  • Otfried Cheong
  • Joachim Gudmundsson
Article

Abstract

The aperture angle α(x,Q) of a point x Q in the plane with respect to a convex polygon Q is the angle of the smallest cone with apex x that contains Q. The aperture angle approximation error of a compact convex set C in the plane with respect to an inscribed convex polygon QC is the minimum aperture angle of any xCQ with respect to Q. We show that for any compact convex set C in the plane and any k>2, there is an inscribed convex k-gon QC with aperture angle approximation error \((1-\frac{2}{k+1})\pi\) . This bound is optimal, and settles a conjecture by Fekete from the early 1990s.

The same proof technique can be used to prove a conjecture by Brass: If a polygon P admits no approximation by a sub-k-gon (the convex hull of k vertices of P) with Hausdorff distance σ, but all subpolygons of P (the convex hull of some vertices of P) admit such an approximation, then P is a (k+1)-gon. This implies the following result: For any k>2 and any convex polygon P of perimeter at most 1 there is a sub-k-gon Q of P such that the Hausdorff-distance of P and Q is at most  \(\frac{1}{k+1}\sin\frac{\pi}{k+1}\) .

Keywords

Hausdorff approximation Aperture angle Convex figure Subpolygon 

References

  1. 1.
    Bose, P., Hurtado, F., Omaña-Pulido, E., Snoeyink, J., Toussaint, G.T.: Some aperture angle optimization problems. Algorithmica 33, 411–435 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brass, P.: On the approximation of polygons by subpolygons. In: Proc. European Workshop Comput. Geom. (EuroCG), pp. 59–61 (2000) Google Scholar
  3. 3.
    Brass, P., Lassak, M.: Problems on approximation by triangles. Geombinatorics 10, 103–115 (2001) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, Berlin (2005) zbMATHGoogle Scholar
  5. 5.
    Cheong, O., van Oostrum, R.: Reaching a polygon with directional uncertainty. Int. J. Comput. Geom. Appl. 11, 197–214 (2001) zbMATHCrossRefGoogle Scholar
  6. 6.
    Fekete, S.: Personal communication Google Scholar
  7. 7.
    Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: Moving an angle around a region. In: Algorithm Theory—SWAT’98. Lecture Notes in Computer Science, vol. 1432, pp. 71–82 (1998) Google Scholar
  8. 8.
    Jenkner, M.: Approximation konvexer Kurven. Master’s thesis, Universität zu Köln (1997) Google Scholar
  9. 9.
    Popov, V.A.: Approximation of convex bodies. C. R. Acad. Bulg. Sci. 21, 993–995 (1968) (in Russian, see Zbl 215.50601) zbMATHGoogle Scholar
  10. 10.
    Popov, V.A.: Approximation of convex sets. B’lgar. Akad. Nauk. Otdel. Mat. Fiz. Nauk. Izv. Mat. Inst. 11, 67–80 (1970) (in Bulgarian, with Russian and English summary) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hee-Kap Ahn
    • 1
  • Sang Won Bae
    • 2
  • Otfried Cheong
    • 2
  • Joachim Gudmundsson
    • 3
  1. 1.Department of Computer Science and EngineeringPOSTECHPohangKorea
  2. 2.Division of Computer ScienceKorea Advanced Institute of Science and TechnologyDaejonKorea
  3. 3.National ICT Australia LtdSydneyAustralia

Personalised recommendations