Discrete & Computational Geometry

, Volume 39, Issue 4, pp 786–790 | Cite as

There Are Integral Heptagons, no Three Points on a Line, no Four on a Circle



We give two configurations of seven points in the plane, no three points in a line, no four points on a circle with pairwise integral distances. This answers a famous question of Paul Erdős.


Integral distances Exhaustive search Orderly generation Solution to an Erdős problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, Berlin (2005) MATHGoogle Scholar
  2. 2.
    Dimiev, S.: A setting for a Diophantine distance geometry. Tensor (N.S.) 66(3), 275–283 (2005) MATHMathSciNetGoogle Scholar
  3. 3.
    Guy, R.K.: Unsolved Problems in Number Theory, 2nd edn. Springer, Berlin (1994) MATHGoogle Scholar
  4. 4.
    Harborth, H.: Integral distances in point sets. In: Butzer, P.L., et al. (eds.) Karl der Grosse und sein Nachwirken. 1200 Jahre Kultur und Wissenschaft in Europa. Band 2: Mathematisches Wissen, pp. 213–224. Turnhout, Brepols (1998) Google Scholar
  5. 5.
    Harborth, H.: Personal communication (2005) Google Scholar
  6. 6.
    Kemnitz, A.: Punktmengen mit ganzzahligen Abständen. Habilitationsschrift, TU Braunschweig (1988) Google Scholar
  7. 7.
    Kohnert, A., Kurz, S.: Integral point sets over ℤnm. Discrete Appl. Math. (2007, to appear) Google Scholar
  8. 8.
    Kreisel, T., Kurz, S.: List of integral hexagons in general position. http://www.wm.uni-bayreuth.de/index.php?id=erdoes (2006)
  9. 9.
    Kurz, S.: Konstruktion und Eigenschaften ganzzahliger Punktmengen. PhD thesis, Bayreuth. Math. Schr. 76, Universität Bayreuth (2006) Google Scholar
  10. 10.
    Kurz, S.: On the characteristic of integral point sets in \(\mathbb{E}^{m}\) . Australas. J. Comb. 36, 241–248 (2006) MATHMathSciNetGoogle Scholar
  11. 11.
    Kurz, S., Wassermann, A.: On the minimum diameter of plane integral point sets. Ars. Comb. (2007, submitted) Google Scholar
  12. 12.
    Noll, L., Bell, D.: n-clusters for 1<n<7. Math. Comput. 53(187), 439–444 (1989) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BayreuthBayreuthGermany

Personalised recommendations