Discrete & Computational Geometry

, Volume 39, Issue 4, pp 786–790 | Cite as

There Are Integral Heptagons, no Three Points on a Line, no Four on a Circle



We give two configurations of seven points in the plane, no three points in a line, no four points on a circle with pairwise integral distances. This answers a famous question of Paul Erdős.


Integral distances Exhaustive search Orderly generation Solution to an Erdős problem 


  1. 1.
    Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, Berlin (2005) MATHGoogle Scholar
  2. 2.
    Dimiev, S.: A setting for a Diophantine distance geometry. Tensor (N.S.) 66(3), 275–283 (2005) MATHMathSciNetGoogle Scholar
  3. 3.
    Guy, R.K.: Unsolved Problems in Number Theory, 2nd edn. Springer, Berlin (1994) MATHGoogle Scholar
  4. 4.
    Harborth, H.: Integral distances in point sets. In: Butzer, P.L., et al. (eds.) Karl der Grosse und sein Nachwirken. 1200 Jahre Kultur und Wissenschaft in Europa. Band 2: Mathematisches Wissen, pp. 213–224. Turnhout, Brepols (1998) Google Scholar
  5. 5.
    Harborth, H.: Personal communication (2005) Google Scholar
  6. 6.
    Kemnitz, A.: Punktmengen mit ganzzahligen Abständen. Habilitationsschrift, TU Braunschweig (1988) Google Scholar
  7. 7.
    Kohnert, A., Kurz, S.: Integral point sets over ℤnm. Discrete Appl. Math. (2007, to appear) Google Scholar
  8. 8.
    Kreisel, T., Kurz, S.: List of integral hexagons in general position. http://www.wm.uni-bayreuth.de/index.php?id=erdoes (2006)
  9. 9.
    Kurz, S.: Konstruktion und Eigenschaften ganzzahliger Punktmengen. PhD thesis, Bayreuth. Math. Schr. 76, Universität Bayreuth (2006) Google Scholar
  10. 10.
    Kurz, S.: On the characteristic of integral point sets in \(\mathbb{E}^{m}\) . Australas. J. Comb. 36, 241–248 (2006) MATHMathSciNetGoogle Scholar
  11. 11.
    Kurz, S., Wassermann, A.: On the minimum diameter of plane integral point sets. Ars. Comb. (2007, submitted) Google Scholar
  12. 12.
    Noll, L., Bell, D.: n-clusters for 1<n<7. Math. Comput. 53(187), 439–444 (1989) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BayreuthBayreuthGermany

Personalised recommendations